• 제목/요약/키워드: Water circulation rate

검색결과 223건 처리시간 0.026초

Membrane distillation of power plant cooling tower blowdown water

  • Ince, Elif;Uslu, Yasin Abdullah
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.321-330
    • /
    • 2019
  • The objective of this study was to examine the recovery of the power plant cooling tower blowdown water (CTBD) by membrane distillation. The experiments were carried out using a flat plate poly vinylidene fluoride (PVDF) membrane with a pore diameter of $0.22{\mu}m$ by a direct contact membrane distillation unit (DCMD). The effects of operating parameters such as transmembrane temperature difference (${\Delta}T$), circulation rate and operating time on permeate flux and membrane fouling have been investigated. The results indicated that permeate flux increased with increasing ${\Delta}T$ and circulation rate. Whereas maximum permeate flux was determined as $47.4L/m^2{\cdot}h$ at ${\Delta}T$ of $50^{\circ}C$ for all short term experiments, minimum permeate flux was determined as $7.7L/m^2{\cdot}h$ at ${\Delta}T$ of $20^{\circ}C$. While $40^{\circ}C$ was determined as the optimum ${\Delta}T$ in long term experiments. Inorganic and non-volatile substances caused fouling in the membranes.

보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험 (Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8)

  • 이용곤;정상화;김창완;김종강
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.459-467
    • /
    • 2006
  • 본 연구에서는 화력발전소 순환수취수로의 유량증가가 취수펌프장 흐름에 미치는 영향을 해석하고 개선하기 위하여 수리 및 수치모형실험을 수행하였다. 수치모형실험결과에 의하면 화력발전소 순환수취수로의 유량이 증가하면 취수로내의 유속과 순환수취수 펌프장의 연직방향와도가 증가하여 순환수취수 펌프장내의 와류발생가능성이 크게 증가하는 것을 알 수 있었다. 수리모형실험을 수행하여 순환수취수펌프장 유입부의 수면 근처 흐름은 거의 균등한 유량 배분이 이루어지고 반면에, 바닥 근처의 흐름은 유량 배분이 균등하게 이루어지지 못하여 취수펌프장내에서 역류현상이 발생하는 것을 밝혀냈다. 삼각형 도류벽을 취수펌프장 유입부에 설치하여 유속분포의 불균일성을 제거할 수 있었고 역류발생문제를 제거하였다.

자연순환회로를 이용한 대형 온수생산 시스템의 개발 (Development of a Large-Scale Hot Water Production System Using a Natural Circulation Loop)

  • 반태곤;이주동;이상천;김영길
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.233-241
    • /
    • 1999
  • 온수생산을 위하여 기존의 강제순환식이 아닌 자연순환식 회로를 이용한 대형 온수생산 시스템을 개발하였다. 그리고 이 시스템의 설계와 성능평가를 위한 시뮬레이션 프로그램을 개발하여 실용화 가능성을 제시하였다. 실제규모의 성능실험에서 주어진 기하학적 조건하에 시스템이 정상상태 운전 시 보일러 가열량(695㎾)일 때, 급수 유량이 0.3$\ell$/s 로 일정하게 순환함을 보였다. 그리고, 비정상상태로 작동 할 경우 순환유량이 0.4~0.6 $\ell$/s 로 시스템이 불안정함을 실험을 통해 확인하였다. 개발된 프로그램과 대형의 온수생산 시스템의 성능평가의 비교.검증을 통하여 시뮬레이션 프로그램을 이용한 시스템 설계에 적용될 수 있음을 보였다.

  • PDF

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

원자로 외벽냉각시 원자로공동에서의 자연순환 이상유동에 대한 수치적 연구 (A Numerical Study on the Two-Phase Natural Circulation Flow in Reactor Cavity under External Vessel Cooling)

  • 김홍민;서준우;김광용;박래준;하광순;김상백
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.781-785
    • /
    • 2003
  • This work presents a numerical analysis of two-phase natural circulation flow in reactor cavity under external vessel cooling. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with zero equation turbulence model are solved to predict the shear key effect on the circulation rate of cooling water and the distribution of void fraction according to the different mass flow of inlet air. Results show that shear key has a positive effect on the circulation rate of cooling water and induce a local increase of void fraction below the shear key, but not remarkably.

  • PDF

해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션 (Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica)

  • 김태균;진경;나지성;이춘기;이원상;문재홍
    • Ocean and Polar Research
    • /
    • 제44권4호
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

콴다효과를 응용한 플랩이 달린 고양력 날개장치에 대한 실험적 연구 (An Experimental Study of Coanda Effect on the Flapped Control Surfaces)

  • 안해성;김효철
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.10-16
    • /
    • 2003
  • To investigate the jet effect on circulation control, a segment of model was prepared and inserted horizontally across the test section of the cavitation tunnel. The hydrodynamic forces acting on the model were measured under the 2 dimensional flow behavior. Circulation flow control requires higher flow rate of water jet than boundary layer control does. Jet injection is effective in increasing lift coefficient and the increments reach to 160% in a certain combination of parameters such as an angle of attack, jet flow rate and flap angle. The blown water jet not only reduces form drag but also thrust effect, which is sometimes greater than the form drag in specific conditions.

기후변화에 따른 도당천 유역 미래 물순환율 평가 (Assessment of Future Water Circulation Rate in Dodang Watershed under Climate Change)

  • 곽지혜;황순호;전상민;김석현;최순군;강문성
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.99-110
    • /
    • 2020
  • The objective of this study is to analyze the trend of changes in the water circulation rates under climate change by adopting the concept of WCR defined by the Ministry of Environment. With the need for sound water circulation recovery, the MOE proposed the idea of WCR as (1-direct flow/precipitation). The guideline for calculating WCR suggests the SCS method, which is only suitable for short term rainfall events. However, climate change, which affects WCR significantly, is a global phenomenon and happens gradually over a long period. Therefore, long-term trends in WCRs should also be considered when analyzing changes in WCR due to climate change. RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios were used to simulate future runoff. SWAT (Soil and Water Assessment Tool) was run under the future daily data from GCMs (General Circulation Models) after the calibration. In 2085s, monthly WCR decreased by 4.2-9.9% and 3.3-8.7% in April and October. However, the WCR in the winter increased as the precipitation during the winter decreased compared to the baseline. In the aspect of yearly WCR, the value showed a decrease in most GCMs in the mid-long future. In particular, in the case of the RCP 8.5 scenario, the WCR reduced 2-3 times rapidly than the RCP 4.5 scenario. The WCR of 2055s did not significantly differ from the 2025s, but the value declined by 0.6-2.8% at 2085s.

Research on heat transfer coefficient of supercritical water based on factorial and correspondence analysis

  • Xiang, Feng;Tao, Zhou;Jialei, Zhang;Boya, Zhang;Dongliang, Ma
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1409-1416
    • /
    • 2020
  • The study of heat transfer coefficient of supercritical water plays an important role in improving the heat transfer efficiency of the reactor. Taking the supercritical natural circulation experimental bench as the research object, the effects of power, flow, pipe diameter and mainstream temperature on the heat transfer coefficient of supercritical water were studied. At the same time, the experimental data of Chen Yuzhou's supercritical water heat transfer coefficient was collected. Through the factorial design method, the influence of different factors and their interactions on the heat transfer coefficient of supercritical water is analyzed. Through the corresponding analysis method, the influencing factors of different levels of heat transfer coefficient are analyzed. It can be found: Except for the effects of flow rate, power, power-temperature and temperature, the influence of other factors on the natural circulation heat transfer coefficient of supercritical water is negligible. When the heat transfer coefficient is low, it is mainly affected by the pipe diameter. As the heat transfer coefficient is further increased, it is mainly affected by temperature and power. When the heat transfer coefficient is at a large level, the influence of the flow rate is the largest at this time.