Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.
Water body extraction is significant for flood disaster monitoring using satellite imagery. Conventional methods have focused on finding an index, which highlights water body and suppresses non-water body such as vegetation or soil area. The Normalized Difference Water Index (NDWI) is typically used to extract water body from satellite images. The drawback of NDWI, however, is that some man-made objects in built-up areas have NDWI values similar to water body. The objective of this paper is to propose a new method that could extract correctly water body with built-up areas in before and after images of flood. We first create a two-element feature vector consisting of NDWI and a Near InfRared band (NIR) and then select a training site on water body area. After computing the mean vector and the covariance matrix of the training site, we classify each pixel into water body based on Mahalanobis distance. We also register before and after images of flood using outlier removal and triangulation-based local transformation. We finally create a change map by combining the before-flooding water body and after-flooding water body. The experimental results show that the overall accuracy and Kappa coefficient of the proposed method were 97.25% and 94.14%, respectively, while those of the NDWI method were 89.5% and 69.6%, respectively.
Body water compartments in vivo were determined in Holstein cattle with age ranging from 5 to 521 days to obtain an equation to estimate volumes of body water. Live weight ranged from 47 to 480 kg. Compartments were determined as antipyrine space for total body water (TBW), thiocyanate space for extracellular water (ECW) and Evans blue dye space for plasma water (PW). Body water compartments expressed as a percentage of live weight decreased as age in days increased and significantly correlated with age in days. Regression analyses revealed that prediction equations had low accuracy. Regression equations of body water compartments on live weight (WT, kg) were useful for the prediction of body fluid with a high accuracy. Live weight significantly regressed on age in days (Day), which was inferred to be utilized for estimation of standardized live weight in case animals were emaciated by certain causes such as severe diarrhea or dehydration. In conclusion, following equations were presented to estimate body water compartments of cattle in vivo : TBW in liters = $0.556({\pm}0.007)WT+10$, r = 0.993, $SE{\pm}0.7$ ECW in liters = $0.321({\pm}0.008)WT+10$, r = 0.978, $SE{\pm}0.8$ PW in liters = $0.0502({\pm}0.0012)WT+1.6$, r = 0.0983, $SE{\pm}0.1$ WT (kg) = $0.772({\pm}0.018)Day+24$, r = 0.982, $SE{\pm}2.3$.
This paper presents an extraction method for water body which uses block-based image partitioning and extension of water body boundaries to improve the performance of supervised classification for water body extraction. The Mahalanobis distance image is created by computing the spectral information of Normalized Difference Water Index (NDWI) and Near Infrared (NIR) band images over a training site within the water body in order to extract an initial water body area. To reduce the effect of noise contained in the Mahalanobis distance image, we apply mean curvature diffusion to the image, which controls diffusion coefficients based on connectivity strength between adjacent pixels and then extract the initial water body area. After partitioning the extracted water body image into the non-overlapping blocks of same size, we update the water body area using the information of water body belonging to water body boundaries. The update is performed repeatedly under the condition that the statistical distance between water body area belonging to water body boundaries and the training site is not greater than a threshold value. The accuracy assessment of the proposed algorithm was tested using KOMPSAT-2 images for the various block sizes between $11{\times}11$ and $19{\times}19$. The overall accuracy and Kappa coefficient of the algorithm varied from 99.47% to 99.53% and from 95.07% to 95.80%, respectively.
The maintenance of the osmolality of body fluids within a very narrow physiologic range is possible by water balance mechanisms that control the intake and excretion of water. Main factors of this process are the thirst and antidiuretic hormon arginine vasopressin (AVP), secretion regulated by osmoreceptors in the hypothalamus. Body water is the primary determinant of the osmolality of the extracellular fluid (ECF), disorders of body water homeostasis can be divided into hypo-osmolar disorders, in which there is an excess of body water relative to body solute, and hyperosmolar disorders, in which there is a deficiency of body water relative to body solute. The sodium is the predominant cation in ECF and the volume of ECF is directly proportional to the content of sodium in the body. Disorders of sodium balance, therefore, may be viewed as disorders of ECF volume. This reviews addresses the regulatory mechanisms underlying water and sodium metabolism, the two major determinants of body fluid homeostasis for a good understanding of the pathophysiology and proper management of disorders with disruption of water and sodium balance.
The assessment method of human body composion by bioelectrical impedance is very simple, safe, rapid and noninvasive. Based on prediction formulas for total body water from bioelectrical impedance, the observed weight loss should be associated with an increase in impedance. However in edematous patients for dialysis, the calculated total body water loss as calculated from impedance were overestimated and significantly higher than the weight loss after dialysis. So determination of impedance were made in 50 edematous patients before, during and after dialysis. Mean weight loss, which was assumed to be only loss of water was 1719$\pm$ 866 gr and mean impedance change was 71.0 $\pm$ 23.0 Ohm under 50kHz. Body weight loss was highly correlated [r>0.81 with the increase in body impedance under variable frequencies[1, 10, 20, 30, 40, 50 kHz . But there were no differences between frequences. In conclusion, clinical application of bioelectrical impedance method is useful for individual edematous patients with new correlation equation[Y=230+26.8X, X;Impedance change, Y;Calculated total body water loss .
Floods are becoming more severe and frequent due to global warming-induced climate change. Water disasters are rising in Korea due to severe rainfall and wet seasons. This makes preventive climate change measures and efficient water catastrophe responses crucial, and synthetic aperture radar satellite imagery can help. This research created 1,423 water body learning datasets for individual water body regions along the Han and Nakdong waterways to reflect domestic water body properties discovered by Sentinel-1 satellite radar imagery. We created a document with exact data annotation criteria for many situations. After the dataset was processed, U-Net, a deep learning model, analyzed water body detection results. The results from applying the learned model to water body locations not involved in the learning process were studied to validate soil water body monitoring on a national scale. The analysis showed that the created water body area detected water bodies accurately (F1-Score: 0.987, Intersection over Union [IoU]: 0.955). Other domestic water body regions not used for training and evaluation showed similar accuracy (F1-Score: 0.941, IoU: 0.89). Both outcomes showed that the computer accurately spotted water bodies in most areas, however tiny streams and gloomy areas had problems. This work should improve water resource change and disaster damage surveillance. Future studies will likely include more water body attribute datasets. Such databases could help manage and monitor water bodies nationwide and shed light on misclassified regions.
The purpose of this study was to investigate the status of total body water and it's influencing factors in community elderly. In this descriptive study, data were collected from 135 elderly at senior citizen center, from October 4 2016 to February 28 2017. Surveys using questionnaire and anthropometric measurements for BMI and total body water were done for data collection. The results of the study showed that while most of the subjects of the study showed total body water within the appropriate range, some elderly especially elderly women show a degraded total body water. Total body water showed significant difference according to sex, body mass index, number of chronic illness, number of medication and urinary incontinence levels. Significant influencing factors were BMI(${\beta}=-0.51$, p=<.001), sex(${\beta}=-0.47$, p=<.001) and this regression model explained 51% of the variance in total body water. In the future, attention needs to be paid to the total body water of the elderly in the local community, especially to the elderly women with risk factors.
Water, in a living being, is as essential as the essence derived from food is in maintaining one's life. The concepts are expressed in forms of "food and drink" and "drink-food" in the ${\mathbb{\ulcorner}}Hwangjenakyoung{\mathbb{\lrcorner}}$ and most of the other oriental medicine related references. Following the steps of the human body's metabolism, the water source builds up characteristic formations, such as bodily fluids (blood/perspiration/urine/essence), in each transforming phase according to the nature of the Ki that propels the transformation. Furthermore, each characteristic formations has its' own suitable duties, distinctive features and its field of activation. The vital energy of life is identified as a positive property due its fluidity and its formless nature. In order for this vital energy to come into its own, it needs to weld into one with the material-natured body of the negative property which will embrace the positive property and transform it into body fluid. Water taken into a body will undergo the first activation of Ki, dissolving the Wigi and the Wongi and transforming into the primary body fluid. The delicates among the dissolved Ki will once again go through a transformation in the Jungcho. It will turn into red blood, with influence of the vital function. When the vital energy completes its duties in all parts of the body, it combines with water again and transforms into the secondary bodily fluid. This is when the Takgi gets filtered and the new enriched essence is created.
Many of the diseases that occur in a life being are either closely related to water, or they occur by loss or deterioration of water metabolism. There are six parts of study on this subject in ${\ulcorner}$Dongeubogam${\lrcorner}$. The parts are, the part of Jinaek the part of Dameum the part of Sobyeon the part of Bujong the part of Changman and the part of Seub. In these parts, it mentions loss of perspiration, abnormal urination, edema, abdominal dropsy, formation of abnormal body fluid and intrusion of dampness into the body and etc as the abnormal water metabolism. Loss of perspiration and urination is a process of eliminating the dampness in the body. Perspiration would be the abnormality of yanghwa[陽化]. Urination would be the loss of eumhwa[陰化]. Eum[飮] is the fluid accumulated in the body that failed to go through the process of Cihwa[氣化]. Dam[痰] is formed when the body fluid is heated by the smoking-fire. Meanwhile, the dampness occurs when the water penetrates into the bones, muscles and joints. Edema and abdominal dropsy are both outcomes of accumulated body fluid. Edema is the liquified body fluid congested on the surface or the peripheral ends of the body. Abdominal dropsy is congestion of fluid, that lost the characteristic of blood due to blood deterioration, in the abdominal part.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.