• Title/Summary/Keyword: Water and wastewater treatment facilities

Search Result 178, Processing Time 0.026 seconds

Leveraging the Smart device for waterworks manhole management (상수도맨홀 관리를 위한 스마트 관리장치의 활용)

  • Chun, Haebok;Kim, Yeongkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • The waterworks company is in charge of managing water facilities buried underground, and the management has been centered on manholes. However, since there is no standard management manual, it has been impossible to introduce and operate a systemized managing tool by water service providers and managers, and manhole management has been carried out by individual data recording personnel for each water service provider. When the management is carried out individually, the data to be shared by other waterworks managers tend to be privatized, and consequently, it may become a big obstacle to proceed with many civil works such as emergency leak repair, road excavation, replacement of old buildings. This report introduces RFID (Radio Frequency Identification) system which is based on the magnetic field capable of IOT. It also describes the necessity of leveraging the system for smart managing of pipe management record that has been done by hand writing. The RFID system includes RFID marker, data reader, portable computer operating program, and data base server operating program. In this system, the data is managed with a single communication device, and it would be possible to share the information on the underground facilities and water treatment facilities. This RFID technology is expected to provide water service providers with opportunities to develop more scientific and modernized underground facilities information systems.

Water Quality and Environmental Treatment Facilities

  • Kim, Geum Soo;Chang, Young Jae;Kelleher, David S.
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.157-173
    • /
    • 2012
  • It has been argued that investment in basic treatment facilities could have both a direct improvement effect and an indirect diversion effect on water quality. The reason why the investment in basic treatment facilities could have a negative diversion effect is that the investment in treatment facilities could affect a budget-constrained regulatory agency's choice in a way that would perversely encourage the regulated firms' emissions, giving a negative result in terms of water quality. We have reviewed the Korean experience and tested if the treatment facilities have improved water quality since 1991. Using a two-stage least-squares method we have shown that building treatment facilities has contributed to improving the water quality even with consideration of the negative effect through reduced enforcement effort. The model and results draw attention to the importance of optimally balancing efforts to build wastewater treatment facilities with efforts to set and enforce regulatory standards.

  • PDF

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

A Study on the UV Intensity Models and their Affecting Factors (자외선 강도 산정 모델과 영향 인자에 관한 연구)

  • Kim, Dooil;Choi, Younggyun;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.421-427
    • /
    • 2008
  • UV disinfection is widely used in water treatment facilities and wastewater treatment plant because of its effectiveness to removal of pathogen and Giardia which is resistant to traditional chemical disinfection. As a design and performance tool of UV disinfection system, 3 dimensional UV intensity models were composed and simulated to compare each other and to find affecting factors in this study. Reflection, refraction and absorption are important parameters in UV intensity model and MPSS and MSSS model can reflect these parameters while LSI model can not. Absorption is the most important parameters among the reflection, refraction, absorption and shadowing so, this should not be neglect. Based on this simulation, shadowing effect is negligible when the number of installed lamp is a few but, this effect can not be neglectable when the number of installed lamp is quite a few. The errors according to shadowing effect is increased as the number of lamp installed increased.

Cost comparison of pretreatment processes in large SWRO desalination plant (대규모 해수담수화 플랜트에서의 전처리공정 비용 분석)

  • Kim, Youngmin;Kim, Jin-Ho;Lee, Sangho;Lee, Chang-Kyu;Park, Kwang Duk;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.555-560
    • /
    • 2013
  • A cost analysis method for pretreament processes of a large scale seawater desalination plant was considered using a cost estimation model, WaTER (Water Treatment Estimation Routine). This model is based on cost functions of U.S. EPA to conduct economic analysis of water treatment facilities. A virtual seawater desalination plant which has pretreatment production capacity of $100,000m^3$ per day was chosen as a model plant. Dual media filtration and microfiltration systems were compared as pretreatment process, and the following reverse osmosis process was modeled. As a result, microfiltration showed a price competitiveness in condition of operating with reverse osmosis process by reducing the loads of water treatment and membrane cleaning despite it's high annual cost.

Effects of controlling plans of non-point pollutant sources in dongcheon of Ulsan (울산시 동천 비점오염원 제어효과)

  • Kang, Ho Seon;Cho, Hong Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.265-276
    • /
    • 2014
  • In this study, we suggested 4 plans to reduce non-point pollutant sources in Dongcheon and analyzed their controlling effects by water quality modeling, XP-SWMM. To do this we identified the influx of non-point pollutant sources to the initial rainwater through the water quality survey in the river and analyzed the causes of them at major locations, and suggested 4 kinds of plans reducing non-point pollutant sources. Plans reducing the non-point pollutant sources through cleaning the industrial road around the river(plan A), through a separate treatment facilities like the gutter(plan B), through installing treatement facilities(plan C), or through combing plan B and C(plan D) were analyzed using XP-SWMM model. The analysis showed that plan A, B, C and D reduced non-point pollutant sources average 21.7 %, 24.7 %, 49.3 %, 56.7 % respectively. Therefore, the water quality pollution in Dongcheon due to the influx of non-point pollutant sources is considered to be reduced effectively though cleaning the road, installed at the exits of paddy or factory basins, invasion type facilities or equipment-type facilities.

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology (하수기반역학을 적용한 공공하수처리시설 역할 재정립)

  • Park Yoonkyung;Yun Sang-Lean;Yoon Younghan;Kim Reeho;Nishimura Fumitake;Sturat L. Simpson;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.

Loess and Lime Treatment for Modification of Waterworks Sludges (황토와 석회의 혼합처리에 의한 정수 슬러지의 개질화에 관한 연구)

  • Lim, Sung-Jin;Cho, Jae-Jun;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.318-327
    • /
    • 2000
  • Sludge production from water treatment plants is increasing each year because water resources deterioration is proceeding and water supply facilities are growing due to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfilling site through the lime treatment and other alternatives. The compression strength of $1.0kg/cm^2$ is necessary for the dozer operation on soft son cover material at municipal landfilling site. Modified sludge was experimentally produced in this study with lime, bentonite, loess, and activated loess dosing. X-ray diffraction patterns of the limed water treatment plant sludge confirmed the presence of calcium carbonate and ettringite. Unconfined compression strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. When adding 20-30% activated loess to water treatment plant sludges. the modified sludges could reach the compression strength for cover soil after 7 days solidification reaction, but decrease of compression strength was intentioned in 28 days reaction period. Solidification effect of the modified sludge with activated loess was observed through the scanning electron microscope.

  • PDF

The System of Sewage and Domestic Wastewater Treatment Plants in Tan-Sui River Basin

  • Ko, Chun-Han
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.26.2-39
    • /
    • 2002
  • Tan-Sui River Basin covers Taipei metropolitan area of 2,726 square kilometers with more than six million residents. Since 1988, Taiwan government started to plan and construct an integrated sewerage system, consisted by both separated and concentrated trunk sewers, wastewater treatment plants and ocean outfalls. This presentation will introduce the master plan and major facilities of Tan-Sui River Basin sewerage system. Other measures to protect general water quality and the environment of adjacent river basin area of Tan-Sui River and her tributaries by Taiwan EPA will be presented as well.

  • PDF

Estimation of Design Population and Design Wastewater Flow Rate for the BTO Project of Wastewater Treatment Facilities (하수종말처리시설 민간투자사업을 위한 계획 인구 및 계획 하수량 추정)

  • Son, Young-Gyu;Lee, So-Young;Kim, Lee-Hyung;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.145-151
    • /
    • 2008
  • A novel method was suggested for the estimation of design population and design wastewater flow rate in fishing and agrarian village. Even though the population was decreasing continuously in this area, the design population was considered as constant with the passage of the time in conventional methods. And although the portion of groundwater uses was pretty high, the design wastewater flow rate was determined by the supply amount of tap water. Consequently, the design population and the design wastewater flow rate were overestimated. To prevent these overestimates, the design population was predicted to decrease gradually using the population trends from Korea National Statistical Office, and the design wastewater flow rate was determined using the way that the supply amount of tap water was applied in developed areas and the supply amount of groundwater was used in undeveloped areas.