• Title/Summary/Keyword: Water and wastewater treatment facilities

Search Result 181, Processing Time 0.03 seconds

Studies on the Effluent Characteristics of Dyeing Wastewater by Textile Classification (섬유 형태에 따른 염색폐수 배출특성 연구)

  • Lee, Soo-Hyung;Park, Jung-Min;Park, Sang-Jung;Jeong, Je-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.881-888
    • /
    • 2007
  • In order to investigate the characteristics of the non-biodegradable material, the $BOD_5/COD_{Cr}$ ratio was used. The average ratio of industrial complex's influent wastewater was 2.29~2.96, the effluent ratio was 4.29~19.0. The removal efficiency of $UV_{254}$ by physicochemical treatment was 22.8~94.7% and 5.3~77.2% by biological treatment, respectively. Of the wastewater removal efficiency for each of the items, the $BOD_5$ treatment efficiency was the greatest at 97.3% and the color & TN treatment efficiency was 40~70%. The study of the economical assessment showed that the complex as well as the individual companies spent 722~1,298 won for each ton of treated wastewater. All of the wastewater treatment facilities spent the most money on chemicals needed to treat the wastewater. The total cost for Nylon manufacturing wastewater treatment plant was the greatest while the total cost for cotton manufacturing wastewater treatment plant turned out to the lowest. As respects of removal efficiency and economocal assessment, Polyester A and Cotton manufacturing wastewater treatment plants were better effective than a dyeing industrial complex wastewater treatment plant.

Saturation curves for chemical coagulation of wastewater treatment (화학 응집제 투입에 따른 수질항목별 하수처리 반응곡선)

  • Ryu, Jae-Na;Oh, Je-Ill;Lee, Kyeoung-Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2010
  • Recently the Government has announced updated water quality standards for wastewater treatment effluent (become effective in 2012). That includes highly enforced regulations for T-P, BOD and COD, and a large budget, in particular for phosphorus removal, was set by the Ministry of environment. Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs, and solid particles are removed by solid-liquid separation. The efficiency of chemical coagulation depends on a various factors, including coagulant types and costs, construction and operation costs for the treatment facilities and so on. The proper selection should be based on the treatment efficiency of coagulants and underlying costs. The current research was to evaluate the treatment efficiencies of coagulants on a variety of wastewater influents and to develop saturation curves for several water quality parameters. Typical $Al_2(SO_4)_3$ and $FeCl_3$ were tested under a range of coagulant concentrations. The pollutant removal efficiencies of chemical treatment both for the $Al_2(SO_4)_3$ and $FeCl_3$ were especially high for T-P, followed by SS, BOD and COD. Correlation test also proved the highest relationship between SS and T-P.

A Study on the Water Pollutant Discharge Inventories for the Improvement of Industrial Wastewater Management System: Primary Steel Manufacturing Facility and Petroleum Refining Products Manufacturing Facility (산업폐수 관리체계 개선을 위한 수질오염물질 배출목록 구축에 대한 연구: 1차 철강 제조업과 석유정제품 제조업)

  • Ahn, Taeung;Kim, Dongmin;Son, Daehee;Kim, Jaehoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.453-467
    • /
    • 2020
  • This study aimed to inventory the water pollutant discharge of wastewater from two facilities, one primary steel manufacturing facility and one petroleum refinery, both of which are located in Korea, and to identify ways to improve the wastewater treatment process through field investigation. Probability evaluation was used to inventory the substances in polluted water. The samples collected in this study included original wastewater, on processing wastewater, and treated water. The general description of wastewater occurrence, major sources, and treatment facilities were also investigated to obtain an integrated database of the pollutants created by different industrial categories. Based on our analysis of raw wastewater and final effluent, the detected pollutants were confirmed by analyzing their presence in the raw or supplemental materials, the potential of formation as byproducts, and the possibility of inclusion as impurities. The compounds detected for each category were screened via investigation of their possible sources and confirmed as the final water pollutant inventories. Thirty kinds of water pollutants were emitted by the primary steel manufacturing facility (reference in case A), including 14 specified hazardous water pollutants. The petroleum refinery (reference in case B) emitted 36 water pollutants, including 16 specified hazardous water pollutants.

Effect of raw water quality decrease on water treatment costs (상수원수 수질저하가 정수처리 비용에 미치는 영향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • In this study, effects of five raw water quality parameters (turbidity, odor compounds caused by algae, filter clogging caused by algae, pH increase caused by algae, and organic matter) on improvements and operations costs of typical water treatment plant (WTP) were estimated. The raw water quality parameters were assumed the worst possible conditions based on the past data and costs were subsequently estimated. Results showed that new water treatment facilities were needed, such as a selective intake system, an advanced water treatment processes, a dual media filter, a carbonation facility, and a re-chlorination facility depending on water quality. Furthermore, changes needed to be made in WTP operations, such as adding powered activated carbon, increasing the injection of chlorine, adding coagulation aid, increasing the discharge of backwashed water, and increasing the operation time of dewatering facilities. Such findings showed that to reliably produce high-quality tap water and reduce water treatment costs, continuous improvements to the quality of water sources are needed.

Current Condition and Prospect of On-Site Domestic Wastewater Treatment Technologies (합병정화조 기술현황 및 전망)

  • 임연택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.95-112
    • /
    • 1998
  • Water quality in the public water course has been polluted more seriously than ever before due to the increase of the number and aremount of pollution sources such as domestic and industrial wastewater. For water quality conservation, the Korean government has been trying to construct sewage treatment facilities continually, of which treatment capacity reached to 11,452,400m$^{3}$/day in 1996. Night soil treatment facilites of m nationwide have the treatment capacity of 24,038m$^{3}$/day. But water quality has not been improved because the sewer systems were insufficient and the treatment efficiencies of sewage were not high, enough. For renovation of water quality, miscellaneous domestic wastewater must be treated because 27g BOD/day out of total 40g BOD/person-day come from miscellaneous wastewater, comparing to 13g BOD/day from night soil. However, sole treatment purifier treat only night soil from the flushing toilet. Therefore, it may be desirable to treat the miscellaneous domestic wastewater and the night soil from flushing toilet together by joint treatment purifier system as on-site domestic wastewater treatment technology. In Korea, the joint treatment purifier system, introduced in 1997, have the benefit as follows; i) good water poiluion control effect, ii ) good effect on river water flow, iii) water pollution control with sewage treatment facility, and iv) rapid pollution control effect, etc. In order to achieve a good effect as stated before, i ) strengthening effluent guideline including BOD, nitrogen and phosphorus, ii ) specializing operation to maintain high performance, and iii) supporting its construction and maintenance costs by the governmental level may be necessary: In addition, automation system of joint treatment purifier, technology for its package and compactness, and a new bio-media bio-filter with higher capacity should be further developed in agreement with a more stringent effluent guideline.

  • PDF

A study on the risk assessment of climate crisis adaptation measures in public sewage treatment facilities (공공하수처리시설의 기후위기 적응대책 위험도 평가 연구)

  • Jaekyung Choi;Younsun Lee;Sunghwan Hwang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • In the context of the Ministry of Environment's 2022 Climate Change Adaptation Plan for Public Institutions, public sewage treatment plants are one of the important targets for climate change response aimed at sustainable water management. In this study, it is applied a modified methodology to four water regeneration centers (public sewage treatment facilities) in charge of sewage treatment in Seoul to analyze the impacts and risks of climate change and discuss priorities for adaptation measures. The results of the study showed that heavy rains, heat waves, and droughts will be the key impacts of climate change, and highlighted the need for measures to mitigate these risks, especially for facility managers.

The Effect of Branches on Kumho River's Water Quality (지류의 수질이 금호강 본류의 수질에 미치는 영향에 관한 연구)

  • Yang, Duk Seok;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1245-1253
    • /
    • 2012
  • In this study, how branches of Kumho River affect to the water quality on Kumho River was investigated. Water samples from six sampling points at Kumho River and three at each branch were taken from Dec. 2009 to Dec. 2011. As results, Namcheon affected BOD and T-P concentrations on Kumho River while Sincheon did only T-P concentrations. However, the water quality of Kumho River was improved because of Sincheon in terms of BOD and COD concentrations. This was the results from management of Sincheon wastewater treatment facility and Jisan wastewater treatment facility which might be the best example for managing wastewater treatment facilities. Dalsecheon would not affect the water quality of Kumho River although it had bad conditions of water quality because of lack of its water quantity comparing to Kumho River's.

Development of BIM models and management of BIM data for waterworks maintenance (상수도시설물의 유지관리를 위한 BIM모델 개발 및 BIM 데이터 관리방안)

  • Park, Jaehyun;Lee, Hyundong;Kwak, Pilljae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.669-679
    • /
    • 2014
  • 3D-based BIM(Building Information Modeling) technologies can be utilized effectively as a means of systematic management of facility information for safety assurance and effective maintenance of waterworks facilities. In this study, BIM models of water treatment facilities that can be used as basic data for BIM-based maintenance of waterworks facilities were developed. Information exchange and generality of the developed BIM models were evaluated by conducting interoperability analysis of IFC(Industry Foundation Classes) conversion models. In addition, the application of COBie(Construction Operations Building information exchange) was recommended as an effective countermeasure to deal with technical limitation regarding exchange and utilization of facilities-related information through current IFC models. The results of this study can contribute to the development of BIM-based maintenance system for waterworks facilities.

Control strategy of primary clarifier operation in wastewater treatment plant during rainfall inflow (초기강우 유입 시 하수처리시설 일차 침전지 운전제어 전략)

  • You, Kwang Tae;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.947-950
    • /
    • 2019
  • The main feature of this paper is to provide a driving control strategy to improve the primary clarifier treatment efficiency in the initial rainfall inflow. With the recent development of IoT technology and sensing technology, the basis for operation control of wastewater treatment facilities has been improved. As a result of improving the efficiency of treatment of primary clarifier using on-line measurement results, it is possible to minimize the outflow of untreated sewage and contribute to the improvement of operation efficiency of wastewater treatment plants.