• Title/Summary/Keyword: Water and sewage

Search Result 1,264, Processing Time 0.029 seconds

Physical and Chemical Analysis of Organic Wastes for the Establishment of Total Management System (유기성 폐기물 종합관리기술구축을 위한 물리·화학적 성상 분석)

  • Kim, Young-Koo;Phae, Chae-Gun;Choi, Hoon-Keun;Kim, Sung-Mi;Hwang, Eui-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.100-114
    • /
    • 2005
  • Organic waste, which is defined as wastes derived from various biological organisms that contain more than 40% of organic materials, is generated about 100 million tons per year in Korea. These organic wastes are now controlled by several governmental entities, under different rules and regulations, leading to the improper management and inefficient treatment. Therefore, integrated management system is primarily needed for the efficient recycling of organic waste. In this study, six kinds of organic wastes, which are food waste, sludges(sewage, waste water, night soil), animal excreta, animals and plants residues, and three kinds of recycling by-products(compost, feed, anaerobic digestion by-products) made of organic wastes, were analyzed for their physical and chemical characteristics. On the basis of this result, a possibility for the efficient recycling of organic waste was investigated.

  • PDF

A Study on the Development of an Automated Inspection Program for 3D Models of Underground Structures (지하구조물 3차원 모델 자동검수 프로그램 개발에 관한 연구)

  • Kim, Sung Su;Han, Kyu Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.413-419
    • /
    • 2022
  • As the development of the underground space becomes active, safety accidents related to the underground are frequently occurring in recent years. In this regard, the Ministry of Land, Infrastructure and Transport is enforcing the 『Special Act on Underground Safety Management』 (enforced on January 1, 2018, hereafter referred to as the Underground Safety Act). Among the core contents of the Underground Safety Act, underground facilities(water supply, sewage, gas, power, communication, heating) buried underground, underground structures(subway, underpass, underpass, underground parking lot, underground shopping mall, common area), ground (Drilling, wells, geology) of 15 types of underground information can be checked at a glance on a three-dimensional basis by constructing an integrated underground spatial map and using it. The purpose of this study is to develop a program that can quickly inspect the three-dimensional model after creating a three-dimensional underground structure data among the underground spatial integration maps. To this end, we first investigated and reviewed the domestic and foreign status of technology that generates and automatically inspects 3D underground structure data. A quality inspection program was developed. Through this study, it is judged that it will be meaningful as a basic research for improving the quality of underground structures on the integrated map of underground space by automating more than 98% of the 3D model inspection process, which is currently being conducted manually.

Biogeochemical Organic Carbon Cycles in the Intertidal Sandy Sediment of Nakdong Estuary (낙동강 하구 갯벌 사질 퇴적물에서 생지화학적 유기탄소순환)

  • Lee, Jae-Seong;Park, Mi-Ok;An, Soon-Mo;Kim, Seong-Gil;Kim, Seong-Soo;Jung, Rae-Hong;Park, Jong-Soo;Jin, Hyun-Gook
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • In order to understand biogeochemical cycles of organic carbon in the permeable intertidal sandy sediments of the Nakdong estuary, we estimated the organic carbon production and consumption rates both in situ and in the laboratory. The Chl-a content of the sediment and the nutrient concentrations in below surface pore water in the sandy sediment were lower than in the muddy sediment. The sediment oxygen consumption rates were relatively high, especially when compared with rates reported from other coastal muddy sediments with higher organic carbon contents. This implied that both the organic carbon degradation and material transport in the sandy sediment were enhanced by advection-related process. The simple mass balance estimation of organic carbon fluxes showed that the major sources of carbon in the sediment would originate from benthic microalgae and detrital organic carbon derived from salt marsh. The daily natural biocatalzed filtration, extrapolated from filtration rates and the total area of the Nakdong estuary, was one order higher than the maximum capability of sewage plants in Busan metropolitan city. This implies that the sandy sediment contributes greatly to biogeochemical purification in the area, and is important for the re-distribution of materials in the coastal environment.

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

Mapping Inundation Areas Using SWMM (SWMM을 이용한 침수예상지도 작성 연구)

  • Don Gon, Choi;Jinmu, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • In this study, data linking module called GeoSWMM was developed using a typical secondary flooding model SWMM in order to improve the accuracy of the input data of SWMM and to map hourly inundation estimation areas that were not represented in the conventional inundation map. GeoSWMM is a data linking module of GIS and SWMM, which can generate a SWMM project file directly from sewer network GIS data. Utilizing the GeoSWMM the project file of SWMM model was constructed in the study area, Seocho 2-dong, Seoul. The actual flooding has occurred September 21, 2010 and the actual rainfall data were used for flood simulation. As a result, the outflow started from 2 PM due to the lack of water flow capacity of the sewage system. Based on the results, hourly inundation estimation maps were produced and compared with flood train map in 2010. The comparison showed about 66% matching in the overlap of inundation areas. By utilizing GeoSWMM that was developed in this study, it is easy to build the sewer network data for SWMM. In addition, the creation of hourly inundation estimation map using SWMM will be much help to flood disaster prevention plan.

A Study on Bio-chemical Sewer Pipe Corrosion In Korea (하수관거의 생·화학적 부식특성에 관한 연구)

  • Kim, Hwan-Gi;Song, Ho-Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • Sewer pipe in Korea is generally constructed with concrete pipes. Moreover, the sewer system is susceptible to the corrosion problem due to the regulation employing anaerobic treatment processes, such as domestic sewage treatment facilities, nightsoil septic tanks and so on. The objective of this study is investigated to experimental test of $H_2S$ production rate affecting corrosion of sewer pipe in Korea. In this study, tube-type and sealed-type reactor were used to examine the reactions in the microorganism suspended growth and biofilm. Furthermore. concentration changes were investigated with COD and sulfate reduction in each reactor. Sulfide production rate was $50.4mg-H_2S/g-VSS{\cdot}d$ in the sealed-type reactor and in the tube-type biofilm reactor was $2.8{\sim}18.8g-H_2S/m^2{\cdot}d$.

  • PDF

Treatment of Synthetic Wastewater by Indirect Aerating Biofilter Submerged Gravel (잔자갈을 충전(充塡)한 간접폭기방식(間接曝氣方式) 침지여상(浸漬濾床)에 의한 합성하수처리(合成下水處理))

  • Yang, Sang Hyon;Won, Chan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.129-138
    • /
    • 1988
  • In order to develop the design and operational criteria in sewage treatment by indirect aerating submerged biofilter, experimental investigations were performed for the reasonable oxygen supply and effecting factors of treatment efficiency. The experiments were executed for the up-flowing synthetic wastewater and aerated water in the submerged biofilter at $20^{\circ}C$. The obtained results are as follows: 1) Appropriate mean diameter of gravels was about 11mm. 2) $BOD_5$ loading rate based on biofilter volume was more reasonable than that on surface area of gravel for operational criteria. 3) To remove the influent $BOD_5$ more than 90%, $BOD_5$ loading rate must be less than $1.0kg-BOD_5/m^3{\cdot}d$ and circulating flowrate must be more than $189m^3/m^3{\cdot}d$. 4) Reaction rate coefficient $K_1$ is related to diameter of gravel and circulating flow rate based on biofilter volume.

  • PDF

Nitrogen and Phosphorus Loss with Runoff and Leachate from Soils Applied with Different Agricultural By-product Composts (부산물 퇴비를 시용한 토양에서 표면유거와 용탈에 의한 질소와 인의 유실)

  • Park, Chol-Soo;Joo, Jin-Ho;Lee, Won-Jung;Yoo, Kyung-Yoal;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.307-312
    • /
    • 2005
  • Since alpine upland in Pyungchang-gun has been typically applied every two or three years with saprolite, agricultural by-products are inputted to raise soil properties. Therefore, the effect of saprolite application on water quality in runoff and leachate should be monitored. To investigate water quality in runoff and leachate with various treatments of agricultural by-product, lysimeter with dimension of $0.85m{\times}1.75m{\times}0.30m$ was installed in Kangwon National University. Control, mixed compost with cow, chicken and sawdust by-product (CCSC), chicken manure by-product compost (CC), food waste by-product compost (FWC), and beer sewage sludge by-product compost (BSSC) at the rate of $10Mg\;ha^{-1}$ were mixed with soil in 25 cm depth, and water qualities in runoff and leachate were monitored from Jun. 4, 2004 to Oct. 18, 2004. EC ($0.8-2.2dS\;m^{-1}$) and concentrations of total N ($25-75mg\;L^{-1}$) and total P ($0.12-0.43mg\;L^{-1}$) were highest in both runoff and leachate of CC treatment. EC values in CC and FWC treatments continuously increased during lysimeter experiment, while total N and total P concentrations continuously decreased. Average total N concentrations in runoff taken from CCSC, FWC and BSSC treatments were 41, 34 and $37mg\;L^{-1}$, and in leachate were 35, 28 and $34mg\;L^{-1}$, respectively. Average total P concentrations were not different with different treatments. EC values in leachate were higher than those in runoff, and total N concentrations in runoff were higher than those in leachate.

The State and Sources of Contamination with BOD, COD, T-N and T-P in Stream Within Chonju City (전주시 하천의 BOD, COD,총질소, 총인에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;황갑수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.43-54
    • /
    • 2002
  • The Chonju and Samchun streams are palling though Chonju City and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joint to the Mankyeong River. The Chonju and Samchun streams are now contaminated with BOD, COD, T-N and T-P and the amounts of each contamination are increasing from upper stream to downstream. At the downstream the amounts of COD. T-N.T-P are several times higher than fifth grade of water quality thor lacustrine. Sewage from Chonju provides BOD, COD,T-N and T-P into the Chonju and Samchun streams and Chonju Waste Water Treatment Plant il a main source of COD, T-N and T-P contamination. Gosapyeong waste disposal site may be the source of BOD and COD contamination. T-N is higher than fifth grade of water quality for lacustrine at the upper stream indicationg that the rivers are contaminated with T-N before inflowing into Chonju by agricultural activity. The Chonju stream asffects the contamination of the Mankyeong river with BOD. COD, T-N,T-P. Other branch steams of the Mankyeong river also affects the contamination of the Mankyeong river by BOD, COD, T-N and T-P, Among the branch streams, the Ikasn stream is a main contamination source. Amounts of concentrations inflowing from the Chonju and Sanchun Streams on Aug. 1999 are calculated by using yeasured flow rate find concentrations of contaminants The result are as fikkiws; 1) the amounts of influent from the Gosan Stream are 0.49, 0.86, 1.61 and 0.01 ton/day for BOD, COD, T-N and T-P, respectively, 2) compared to the amounts of influent from the Gosan Stream, BOD, COD,T-N,T-P supplied from the Chonju river are higher by about 5, 7, 7. 36 times, respectively, and those supplied from the Iksan stream are higher by about 13, 10, 10, 147 times, respectively.

Investigation of Heavy Metal (Zn, Cu, Cd, Pb) Contents in the Effluents, Soils and Plants at Keumho Riverside (금호강(琴湖江) 유역(流域)의 수질(水質), 토양(土壤) 및 작물체중(作物體中)의 중금속(重金屬) ( Zn , Cu , Cd , Pb ) 함량조사(含量調査))

  • Lee, Jyung-Jae;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 1986
  • This study was carried out to determine the heavy metal contents in effluents, soils and plants grown on the soils from 1982 to 1983. The heavy metal pollution of Keumho river was resulted from Sincheon, Kongdancheon and Dalseocheon. The urban sewage influxes in Sincheon and Dalseocheon whereas the industrial wastewater flows in Kongdancheon. The average heavy metal contents of effluents in these streams exceeded the Korean Standard Environmental value. The high level of heavy metal contents in soils and plant tissues should be originated from the polluted river water. The heavy metal contents of soils were significantly positively correlated with that of plant.

  • PDF