• 제목/요약/키워드: Water and energy cycle

검색결과 536건 처리시간 0.03초

실리카겔-물계 흡착식 냉동기 사이클 시뮬레이션 (Cycle Simulation of an Adsorption Chiller Using Silica Gel-water)

  • 권오경;윤재호
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.116-124
    • /
    • 2007
  • An adsorption chiller is expected to have high energy-efficiency in utilizing the waste heat exhausted from a process. The objective of this paper is to investigate the performance of silica gel-water adsorption chiller from the cycle simulation and to provide a guideline for design of the adsorption chiller. The effect of cycle time, inlet temperature and water flow rate on the cooling capacity and COP is quantified during the cycle operation. It is found that the performance of adsorption chiller is more sensitive to the change of inlet water temperature rather than the water flow rate. It is concluded that the COP is 0.57 in the standard conditions(hot water $80^{\circ}C$, cooling water $30^{\circ}C$, chilled water inlet temperatures $14^{\circ}C$ and cycle time 420sec).

Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로) (A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine -)

  • 조현정;김우람;박지형;황용우
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

원자력 발전소의 온배수를 이용한 해양온도차 발전의 타당성 검토 (OTEC System using the Condenser Effluent from Nuclear Power Plant a feasibility study)

  • 신상웅;천원기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.238.2-238.2
    • /
    • 2010
  • Recently, environmental pollution and energy depletion problems have been issued over the world. For this reason, many renewable systems have been developing. Of these, the Ocean Thermal Energy Conservation(OTEC) is drawing attention as the upcoming alternative energy source. In this paper, the efficiency of each of OTEC which harness the effluent from nuclear power plant was analyzed by using computer calculation. The result, shows that Ul-jin Nuclear Power Plant is the best place geographically and the regenerative cycle is most outstanding performance cycle for OTEC. The difference of temperature between surface water and deep water temperature should be greater than $20^{\circ}C$ in order to increase the efficiency.

  • PDF

고온열 이용 공정의 열역학적 해석 (Thermodynamic Analysis of Thermochemical Process for Water Splitting)

  • 김종원;손현명;이상호;심규성;정광덕
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.204-213
    • /
    • 2002
  • In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

WEP 모형을 이용한 도림천 유역 물순환 모의 (Water Cycle Simulation for the Dorimcheon Catchment Using WEP Model)

  • 이승종;김영오;이상호;이길성
    • 한국수자원학회논문집
    • /
    • 제38권6호
    • /
    • pp.449-460
    • /
    • 2005
  • 본 연구에서는 전형적인 도시하천으로 왜곡된 물순환을 보이는 도림천 유역에 대해서 WEP(Water and Energy transfer Processes) 모형을 이용하여 물순환 모의를 수행하였다. 과거(l975년)와 현재(2000년)의 토지이용도를 이용한 모의를 통해 도시화에 의한 불투수율 증가가 유출특성에 미치는 영향을 분석하였으며, 모의결과 도시의 개발로 인해 과거보다 첨두 도달시간은 감소하고, 첨두 및 총유출량이 증가한 것으로 나타났으며, 침투량과 기저유출량이 감소한 것을 확인할 수 있었다. 또한 왜곡된 물순환을 회복하기 위한 대안으로 침투트랜치와 투수성 포장재의 설치 효과에 대한 모의를 수행하였으며, 모의결과 두 가지 대안을 함께 적용했을 경우에 도시개발 이전의 유출특성에 근접하는 것을 확인할 수 있었다.

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석 (Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution)

  • 권오경;윤재호;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구 (Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted)

  • 이진국;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구 (Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat)

  • 김경훈;김세웅;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

해양온도차발전 Closed and Regeneration Cycle의 기본 정특성 (Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System)

  • 차상원;김유택;모장오;임태우;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1151-1157
    • /
    • 2012
  • OTEC기술은 신재생에너지 기술 중의 하나로 따듯한 표층수와 차가운 심층수의 온도차를 이용하여 전력을 생산하는 기술이다. 작동유체의 선정과 OTEC 사이클의 상태에 따라 에너지효율과 환경적인 측면에 많은 영향을 준다. OTEC의 작동유체로는 ammonia, R22, R407C, R410A가 있다. 본 논문에서는 OTEC 시스템의 최적화를 위해 $25^{\circ}C$에서의 증발압력를 비교하였다. 또한 밀폐사이클과 재생사이클에서의 작동유체에 따른 출력과 효율에 대하여 연구하였다.