• Title/Summary/Keyword: Water and Wastewater Treatment

Search Result 2,059, Processing Time 0.028 seconds

A Study on Advanced Treatment of Sewage Wastewater by Eichhornia crassipes (부레옥잠을 이용한 생활하수의 고도처리에 관한 연구( I ))

  • Chung, Soon-Hyung
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.69-77
    • /
    • 2003
  • The present time, water hyacinth(Eichhornia crassipes) was widely used for a purification of a polluted lake, livestock wastewater and sewage wastewater treatment. This study was conducted to evaluate the propriety of sewage wastewater treatment by water hyacinth(Eichhornia crassipes). On the study of optimal cultivation density, 3 kg/m$^2$ was selected for the most suitable initial cultivation density through the BOD, T-N and T-removal efficiency. In experiment of purification capacity, hyacinth(Eichhornia crassipes) removed the 267.2 mg BOD/kg · day, 72 mg T-N/kg · day and 8.6 mg T-P/kg · day at 30 operation days respectively. The result showed that hyacinth(Eichhornia crassipes) could be used for recovery of eutrophic lake effectively. In the test of optimal HRT(hydraulic retention time), 9 days was selected with the suitable HRT, and BOD, T-N and T-P were removed with 75%, T-N 88% and T-P 97% respectively.

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Effect of Gamma-ray Treatment on Toxicity of Textile and Pigment Wastewaters (감마선 처리가 섬유와 안료폐수의 생물독성에 미치는 영향)

  • Kim, Eun-Ae;Jo, Hun-Je;Park, Eun-Joo;Kim, Hyo-Jin;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.145-149
    • /
    • 2006
  • Textile and pigment wastewater samples collected from an industrial complex showed toxic effect on Daphnia magna. For textile wastewater, 48 h acute toxicity of effluent was not detected while toxic unit (TU) of influent was 1.79. The toxicity of influent was completely disappeared by gamma-ray treatment at 10 kGy or by suspended solids (SS) removal. In case of pigment wastewater, both influent and effluent were toxic to D. magna though the effluent satisfied current water quality standards. Gamma-ray treatment had little effect on the toxicity reduction of pigment wastewater since the toxicity was mainly caused by metal ions, in particular, Cr(VI). This work suggests the bioassay technique for monitoring adverse effects of wastewater should be introduced, and also shows the usefulness of gamma-rays as an advanced treatment technique for textile wastewater.

Application of MBR process for the treatment of RO concentrate from wastewater reuse process (하수재이용 공정에서 발생되는 RO농축수 처리를 위한 MBR 공정 적용)

  • Lee, Do-Hun;Jang, Hyun-Ji;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.339-349
    • /
    • 2013
  • Biological treatment of RO concentrate from wastewater reuse process is known to be very difficult due to its high concentration of non-degradable organics and salt ions such as chloride, nitrate and phosphate. In this research, the treatment performance of MBR was examined using RO concentrate mixed with raw wastewater as the influent of MBR. Addition of PAC (powdered activated carbon) to MBR was also evaluated in order to enhance the treatment performance and stability. The performance of MBR for treating only RO concentrate decreased gradually although external carbon source was added. The average removal performance of MBR with and without PAC decreased from 99.1 %(98.8 %) to 94.9 %(91.4 %) for COD, 81.3 %(80.3 %) to 42.0 %(41.9 %) for T-N and 57.3(55.0 %) to 30.0 %(21.0 %) for T-P with the increase of RO concentrate mixing rate of 0 % to 20 % in the feed water. Addition of PAC showed positive effect on the performance of MBR for the removal of COD and phosphorus in case that the ratio of RO concentrate to feed water increased.

Efficiency evaluation of MBR, A/O processes utilizing self-sufficient energy (에너지 자립형 MBR, A/O 공정의 효율 평가)

  • Lim, Setaek;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.305-314
    • /
    • 2014
  • A pilot plant (Q=5 $m^3/d$) study was implemented for small and medium sized personal wastewater treatment plant effluent to evaluate MBR and A/O processes utilizing self-sufficient energy composed of wind and solar energy. The removal efficiencies of BOD, SS, turbidity and color were sufficient for legal water quality standards for gray water. However, those of nitrogen and phosphorus could not meet legal regulations which suggested that further removal of those contaminants were needed for reuse of the treated water. Self-sufficient energy rate was 100 % for the pilot plant due to excessive design capacity. In this research, wind and solar energy system was applied considering geological characteristics, which significantly improved energy self-sufficiency. Substantial improvement on energy self-sufficiency can be obtained by optimized investment and operation at a full scale wastewater treatment plant.

A Study of Optimum Operational Methods for Domestic Wastewater Treatment Plants in Korea (국내 하수종말처리장 최적 운전 방안에 관한 연구)

  • Lee, Byong-hi;Lee, Woung-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2000
  • The optimum operation of domestic wastewater treatment plant can give influence on operational cost and future expansion in Korea where has 93 operational domestic wastewater treatment plants. Also, the study on optimum operation can reduce operation cost and budget of municipalities whom have responsibility of wastewater treatment plant operation. In this study, 9 domestic wastewater treatment plants which can represent 93 plants in Korea have been selected and operational data are gathered. The collected data are inputted to computer simulator based on IAWQ's Activated Sludge Model No.1 and optimum operation methods are developed. Also, the electric power for aeration which has large portion of overall operation cost are calculated based on design and operation conditions and these are compared. In this study, it was found that design wastewater characteristics are 1.6 times higher than those of daily maximum except for E plant and that estimation methods for design wastewater characteristics have to be improved. Based on computer simulation, we found there is no need to operate all aeration tanks due to weak influent overall power for aeration can be reduced to about 43% of design one.

  • PDF

Effect of Flow Rate on the Continuous Cycling Electrolytic Treatment Process for Silver Ion Containing Wastewater (은 함유 폐수의 연속 순환 전해처리 시 유량변화가 회수 공정에 미치는 영향)

  • Chung, Won-Ju;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.577-580
    • /
    • 2007
  • The influence of flow rate has been investigated on the treatment efficiency of continuous cycling electrolytic process employing artificial and actual photographic wastewater which containing silver ion. For artificial wastewater, the treatment efficiency of process was found to rise ca. three times when the flow rate of wastewater was increased from 3 mL/min to 15 mL/min. The process efficiency was doubled under the same condition regarding actual wastewater. The effect of flow rate on the treatment efficiency was observed to be altered according to the metal ionic form and solution composition. The coefficient of mass transfer was estimated using model equation, which verified that the raised treatment efficiency at higher flow rate was due to the increased mobility of ionic species.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

Effect of graphene oxide on polyvinyl alcohol membrane for textile wastewater treatment

  • Zahoor, Awan;Naqvi, Asad A.;Butt, Faaz A.;Zaidi, Ghazanfar R.;Younus, Muhammad
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.121-128
    • /
    • 2022
  • A tremendous amount of energy resources is being wasted in cleaning wastewater to save the environment across the globe. Several different procedures are commercially available to process wastewater. In this work, membrane filtration technique is used to treat the textile wastewater because of its cost effectiveness and low environmental impacts. Mixed Matrix Membrane (MMM) consist of Polyvinyl Alcohol (PVA) in which Graphene Oxide (GO) was added as a filler material. Five different membranes by varying the quantity of GO were prepared. The prepared membrane has been characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Water Contact Angle (WCA). The prepared membranes have been utilized to treat textile wastewater. The synthesized membranes are used for the elimination of total dissolve solids (TDS), total suspended solids (TSS), Methylene blue (MB) dye and copper metallic ions from textile wastewater. It is concluded that amount of GO has direct correlation with the quality of wastewater treatment. The maximum removal of TDS, TSS, MB and copper ions are found to be 7.42, 23.73, 50.53 and 64.5% respectively and are achieved by 0.02 wt% PVA-GO membrane.

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF