• 제목/요약/키워드: Water adsorption

검색결과 1,592건 처리시간 0.025초

Green synthesis of aluminum-based metal organic framework for the removal of azo dye Acid Black 1 from aqueous media

  • Jung, Kyung-Won;Choi, Brian Hyun;Lee, Seon Yong;Ahn, Kyu-Hong;Lee, Young Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.316-325
    • /
    • 2018
  • Aluminum based metal-organic framework using a di-carboxylate linker succinic acid (Al-SA MOF), are synthesized in water with minimal generation of secondary pollutants. The physicochemical properties of Al-SA MOF were examined, followed by its utility for the adsorption of Acid Black 1 (AB1) in aqueous media. Influences of key parameters such as pH, contact time, initial AB1 concentration,temperature, and selectivity on the adsorption process were assessed. A series of adsorption mechanisms are proposed, which involve electrostatic, hydrogen bonding, and hydrophobic interactions. These findings suggest that Al-SA MOF is a potent candidate in removing complex azo dyes molecules from aqueous media.

양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절 (Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation)

  • 이은경;조강희;김상겸;임종성;김종남
    • 청정기술
    • /
    • 제24권1호
    • /
    • pp.55-62
    • /
    • 2018
  • $90^{\circ}C$ 이하의 저온열원 구동 수분 흡착식 냉방 시스템에 사용되는 흡착제는 효과적인 냉열 생산을 위해서 상대습도($P/P_0$) 0.1 ~ 0.3에서 높은 수분 흡-탈착량 차를 보이는 것이 좋다. 메조다공성 실리카(MCM-41)와 다공성 유기-금속 구조체(MIL-101) 의 경우 최대 수분 흡착량은 많지만 상대습도($P/P_0$) 0.1 ~ 0.3 구간에서 각각 $0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$의 낮은 수분 흡-탈착량 차를 갖는다. 이 연구에서는 메조다공성 실리카와 다공성 유기-금속 구조체의 표면 성질을 조절하여 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차를 증가시켰다. 주로 수분 흡착이 상대습도($P/P_0$) 0.5 ~ 0.7에서 일어나는 메조 다공성 실리카의 경우 알루미늄을 관능화 시킨 후에 염기도가 다른 여러 양이온($Na^+$, ${NH_4}^+$, $(C_2H_5)_4N^+$)들로 교환하거나 염($CaCl_2$)을 20 wt% 함침하여 각각의 흡착제들에 대해 $35^{\circ}C$에서 수분 흡착 등온선을 측정하였다. 양이온 교환 후 수분 흡착이 주로 일어나는 구간이 상대습도($P/P_0$) 0.5 부근으로 이동하였으나 여전히 상대습도($P/P_0$) 0.1 ~ 0.3에서 낮은 수분 흡-탈착량 차를 보였다. 하지만 흡습성을 갖는 염($CaCl_2$)을 20 wt% 함침한 메조다공성 실리카는 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.027{g_{water}\;g_{ads}}^{-1}$에서 $0.152{g_{water}\;g_{ads}}^{-1}$으로 증가하였다. 수분 흡착이 상대습도($P/P_0$) 0.3 ~ 0.5에서 주로 일어나는 다공성 유기-금속 구조체에도 염($CaCl_2$)을 20 wt% 함침하였더니 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.330{g_{water}\;g_{ads}}^{-1}$까지 증가하였다.

DEVELOPMENT OF ADSORBENT USING BYPRODUCTS FROM KOREAN MEDICINE FOR REMOVING HEAVY METALS

  • Kim, S.W.;Lim, J.L.
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Most of the herb residue producing from oriental medical clinics(OMC) and hospitals(OMH) is wasted in Korea. To develop of adsorbent for removing heavy metal from wastewater, the various pre-treatment methods of the herb residue were evaluated by potentiometric titration, Freundlich isotherm adsorption test and the kinetic adsorption test. The herb residue was pre-treated for increasing the adsorption capacity by cleaning with distilled water, 0.1 N HCl and 0.1 N NaOH and by heating at $370^{\circ}C$ for 30 min. It showed a typical weak acid-weak base titration curve and a short pH break like commercial activated carbon during photentiometric titration of pre-treated herb residue. The log-log plots in the Freundlich isotherm test were linear on the herb residue pre-treated with NaOH or HCl like commercial activated carbon. The adsorption capacity(qe) in the Freundlich isotherm test for $Cr^{6+}$ was 1.5 times higher in the pre-treated herb residue with HCl than in activated carbon. On the other hand the herb residue pre-treated with NaOH showed the good adsorption capacities for $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ even though those adsorption capacities were lower than that of activated carbon. In kinetic test, most of heavy metals removed within the first 10 min of contact and then approached to equilibrium with increasing contact time. The removal rate of heavy metals increased with an increase of the amount of adsorbent. Likewise, the removal rates of heavy metals were higher in the herb residue pre-treated with NaOH than in that pre-treated with HCl. The adsorption preference of herb residues pre-treated with NaOH or HCl was $Pb^{2+}>Cu^{2+}$ or $Cd^{2+}>Cr^{6+}$ in the order. Conclusively, the herb residue can be used as an alternative adsorbent for the removal of heavy metals depending on pr-treatment methods.

실리카겔을 이용한 흡착식 담수화 시스템 개발 (Development of Adsorption Desalination System Utilizing Silica-gel)

  • 현준호;;이윤준;천원기
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

실리콘 표면에 흡착된 수분층의 나노트라이볼로지 거동 (Nanotribological Behavior of Adsorbed Water Layer on Silicon Surface)

  • 안효석;김두인;최동훈
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.245-250
    • /
    • 2003
  • Water is known to playa crucial role on friction of moving parts in nanoscale contact. Little is, however, known about the tribological behavior of a solid surface that is covered with water adsorption layer. The objective of this study is to investigate the nanotribological behavior of the water layer in relation to water affinity of the surface and relative humidity. This paper presents an examination of the frictional behavior of water adsorption layer as 'confined liquid film'. It is shown that the friction is inversely proportional to the hydrophilicity of surface and relative humidity. On the other hand, friction of hydrophobic surface is not influenced by relative humidity. A model is proposed for the water-mediated contact in which it is shown that the water layer between two hydrophilic surfaces with high relative humidity behaves as a lubricant.

실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가 (Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment)

  • 변해일;여건희;응우옌 홍안;김영웅;김동건;이태훈;정설화;최영화;오승대
    • 토지주택연구
    • /
    • 제15권1호
    • /
    • pp.167-177
    • /
    • 2024
  • 본 연구에서는 하이드로사이클론, 응결/응집, 용존공기부상 단일 공정이 결합한 실 규모 물순환 조합공정(HCFD)의 오염 지표수 처리 성능을 평가하였다. 실 규모 물순환 공정은 수질 변동이 큰 유입 원수를 대상으로 안정적인 수처리 효율을 보였으며, 유입수의 주요 수질 지표가 매우 나쁨(BOD, TP, COD) 혹은 약간 나쁨(SS)이었으나, 방류수는 매우 좋음(BOD, SS, TP) 혹은 좋음(COD) 수준으로 향상되었다. 물순환 시스템 방류수의 후속 고도 처리를 위해 활성탄 기반 흡착 공정의 용존성 유기물 및 미량오염물질(잔류의약물질 APAP 및 산업 화학물질 AO7) 처리 잠재성을 평가하였다. 오염원 흡착 특성은 흡착동역학 및 등온 흡착실험과 관련된 모델링 기법을 이용하여 관찰하였다. 실험 결과, 후처리 활성탄 흡착은 잔류 유기물, APAP, AO7 유기물에 대한 높은 오염원 제거 잠재성이 있음이 확인되었으며, 오염원 흡착속도 및 최대 흡착량 값은 유사 2차 반응속도 모델과 Langmuir 등온흡착 모델에 의해 결정되었다. 본 연구 결과, 활성탄 기반 흡착 공정은 기존의 물순환 조합공정과 연계시 수처리 효율을 상호 보완적으로 높이고, 흡착 공정은 전단의 입자 분리 공정으로 제거가 어려운 용존성 오염원의 후속 처리에 대한 높은 잠재성이 있음을 시사한다.

주류 제조과정에서 발생하는 바이오매스를 흡착제로 한 구리 제거 특성 (Removal Characteristics of Copper Ion in Wastewater by Employing a Biomass from Liquor Production Process as an Adsorbent)

  • 백미화;김동수
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.626-631
    • /
    • 2006
  • The adsorption features of copper ion have been investigated by taking the barley residue which occurring from the beer production process as an adsorbent. Under the experimental conditions, adsorption equilibrium of copper ion was attained within 30 minutes after the adsorption started and the adsorption reaction was observed to be first order. As the temperature increased, the adsorbed amount of copper ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results which obtained by varying the temperatures, several thermodynamic parameters for copper adsorption reaction were estimated. Regarding the electrokinetic behavior of barley residue, its electrokinetic potential was observed to be positive below pH 5 and turned into negative above this pH. In the pH range from 1.5 to 4, copper adsorption was found to be increased, which was well explained by the electrokinetic behavior of barley residue in the pH range. When nitrilotriacetic acid, which is a complexing agent, was coexisted with copper ion, equilibrium adsorption of copper ion was decreased and this was presumed to be due to the formation of metal complex. In addition, the adsorbed amount of copper ion was examined to be increased when $KNO_3$ was coexisted, however, it approached a saturated value above a certain concentration of $KNO_3$.

폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구 (Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent)

  • 이진숙;김동수
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

Adsorption of microcystin onto activated carbon: A review

  • Ampiaw, Rita E.;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • 제10권6호
    • /
    • pp.405-415
    • /
    • 2019
  • Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as it is highly toxic. Among the several techniques employed for the removal of this toxin, adsorption with AC has been extensively studied. AC has gained wide attention as an effective adsorbent of m-LR due to its ubiquity, high sorption capacity, cost effectiveness and renewability. In this review, the adsorption of m-LR onto AC was evaluated using the information available in existing scientific literature. The effects of the pore volume and surface chemistry of AC on the adsorption of m-LR considering the structural and chemical properties of ACs were also discussed. Furthermore, we identified the parameters that influence adsorption, including natural organic matter (NOM), pH, and ionic strength during the m-LR adsorption process. The effect of these parameters on MCs adsorption onto AC from previous studied is compiled and highlighted. This review may provide new insights into future activated carbon-m-LR adsorption research, and broaden its application prospects.

코발트 기반 프러시안블루 유사체를 이용한 수중 암모늄 이온의 선택적 흡착 (Selective adsorption of ammonium ion via cobalt-based Prussian blue analogue)

  • 김태환;날게스 데흐바시 니아;윤여명;김태현;황유훈
    • 상하수도학회지
    • /
    • 제38권2호
    • /
    • pp.95-107
    • /
    • 2024
  • This study proposes the use of a cobalt-based Prussian blue analogue (Co-PBA; potassium cobalt hexacyanoferrate), as an adsorbent for the cost-effective recovery of aqueous ammonium ions. The characterization of Co-PBA involved various techniques, including Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption analysis, and zeta potential. The prepared Co-PBA reached an adsorption equilibrium for ammonium ions within approximately 480 min, which involved both surface adsorption and subsequent diffusion into the interior. The isotherm experiment revealed a maximum adsorption capacity of 37.29 mg/g, with the Langmuir model indicating a predominance of chemical monolayer adsorption. Furthermore, the material consistently demonstrated adsorption efficiency across a range of pH conditions. Notably, adsorption was observed even when competing cations were present. Co-PBA emerges as a readily synthesized adsorbent, underscoring its efficacy in ammonium removal and selectivity toward ammonium.