• Title/Summary/Keyword: Water Vapor

Search Result 1,656, Processing Time 0.031 seconds

Permeation Characteristics of Water Vapor Through PVA/PSSA_MA/THS-PSA Membranes (PVA/PSSA-MA/THS-PSA 막의 수증기 투과특성에 관한 연구)

  • Rhim, Ji-Won;Cho, Hyun-Il;Kim, Dae-Hoon;Ha, Seong-Yong;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • In this study, 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) was added to poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) to improve the separation characteristics toward water vapors in the air. The prepared membranes varying both PSSA_MA and THS-PSA amounts were also synthesized at different cross linking temperatures. Then, in order to investigate the separation characteristics of the resulting membranes, the dynamic vapor sorption (DVS) and vapor permeation experiments were carried out. The increase of cross-linking temperature showed longer time to reach the equilibrium sorption state from the dynamic vapor sorption experiments. PVA/PSSA_MA (3%)/THA-PSA(7%) prepared at $120^{\circ}C$ gave the highest permeability of 480 barrer at $35^{\circ}C$.

Comparison of Adsorption Characteristics on Zeolite 13X and Silica-aluminar (제올라이트 13X와 실리카-알루미나의 흡착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.729-736
    • /
    • 2011
  • This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around $5\;\AA$ than SAK in the pore range of $10\sim100\;\AA$. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around $5\sim10\;\AA$ than SAK in the pore range of less than $10\;\AA$. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of $10\sim100\;\AA$ than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • Yun, Seong-Yeong;Jang, Yun-Chang;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.

The Measurement of Flash Point of Water-Methanol and Water-Ethanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 Water-Methanol과 Water-Ethanol계의 인화점 측정)

  • Ha, Dong-Myeong;Park, Sang Hun;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.39-43
    • /
    • 2015
  • The flash point is the major property to characterize fire and explosion hazard of liquid mixtures. The flash point is the lowest temperature at which a liquid gives off enough vapor to form a flammable air-vapor mixture. The flash points of two aqueous mixtures, water-methanol and water-ethanol, were measured using Seta flash closed cup tester. A prediction method based on activity coefficient models, Wilson and UNIQUAC equations, was used to calculate the flash point. The calculated flash points were compared to the results by the calculating method using Raoult's law. The calculated values based on activity coefficients models were found to be better than those based on the Raoult's law.

Exploration of the teaching method for the prescription of the misconceptions on the Candle Experiment (촛불 실험과 관련된 오개념 교정을 위한 지도방안 탐색)

  • 전우수
    • Journal of Korean Elementary Science Education
    • /
    • v.18 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • There is an experiment in the elementary science textbook which a burning candle hold upright in a water tank and a beaker is converted over the burning candle, the candle flame goes out and the water rises into the beaker. Some reference books including teachers' guide for the elementary school teachers explain the reason why water rises that oxygen is "used up", so water rises the same volume of consumed oxygen into the beaker. But this explanation is only partially correct. In this study, discrepancies of the explanation that oxygen is "used up" are analyzed. Water rises by two major reasons. One is that water can rise to the level about l/3 of the volume of consumed oxygen. The other is that the beaker is converted over the burning candle which produces hot CO2 and water vapor, and the candle's flame heats the air around it to expand, after the candle flame goes out, the air in the beaker cools and water vapor changes to liquid water, so, air pressure in the beaker is reduced, and the water is pushed into the beaker by great air pressure outside. 1 demonstrate a inquiry teaching method of the candle experiment.

  • PDF

Water Vapor Permeation Properties of Al2O3/TiO2 Passivation Layer Deposited by Atomic Layer Deposition (원자층 증착법을 이용한 Al2O3/TiO2 보호막의 수분 보호 특성)

  • Kwon, Tae-Suk;Moon, Yeon-Keon;Kim, Woong-Sun;Moon, Dae-Yong;Kim, Kyung-Taek;Shin, Sae-Young;Han, Dong-Suk;Park, Jae-Gun;Park, Jong-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2010
  • In this study, $Al_2O_3$ and $TiO_2$ films was deposited on to PES (poly(ethersulfon) substrate by using atomic layer deposition as functions of deposition temperature and plasma power. The density and carbon contents of $Al_2O_3$ and $TiO_2$ films was changed by varying process conditions. High density thin films was achieved through optimizing the process conditions. Buffer layer was deposited prior to the processing of upper thin films to avoid PES surface destruction during the high power plasma process and to enhances the tortuous path for water vapor permeation for the defect decoupling effect. The water vapor transmission rate by using MOCON test was investigated to analyze the effect. Water vaper permeation properties was improved by using the inorganic multi-layer passivation layer and activation energy of the water vapor permeation was increased.

Comfort Properties of Silk#x00B7;Rayon-Cellulose Fiber Union Fabrics (견·인견과 셀룰로오스섬유 교직물의 쾌적성능 평가)

  • Bae, Young Hee;Yun, Chang Sang;Jeong, Woon Seon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study was conducted to suggest the best union fabric to combine with cellulose fiber for summer and in-between seasons. Four types of union fabric, viz. silk/flax, silk/cotton, rayon/flax and rayon/cotton, were used as sample fabrics after weaving them in a local textile factory. The air permeability, moisture regain, water absorption, water vapor permeability and thermal insulation of the samples were tested. The results are as follows. The rayon/flax union fabric is the most suitable for summer clothes due to its having the best comfort property of air and water vapor permeability, and moisture and water absorption. For in-between seasons, it is recommended to use the silk/cotton union fabric because of its good thermal insulation properties.

Water management for vapor-fed direct methanol fuel cells (수동급기 직접 메탄올 연료전지의 공기극 물 관리)

  • Chang, Ik-Whang;Ha, Seung-Bum;Cha, Suk-Won;Lee, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.319-322
    • /
    • 2009
  • This paper investigated environmental effects for passive, air-breathing, and vapor-feeding direct methanol fuel cells. In these experiments, experimental parameters are temperature($30^{\circ}C$, $40^{\circ}C$ and relative humidity(25%, 50%, 75%). From these experimental results, the water contents play a key role in terms of optimal ionic conductivity at the cathode catalyst layer. In case of pure methanol feeding, the performance is inversely proportional to the relative humidity. The water generation resulting from methanol crossover maintains ionic conductivity at the cathode. On the contrary, diluted methanol solution (50wt.%) lowers methanol crossover to the cathode. In order to increase ionic conductivity, the relatively high humidity is required to the cathode catalyst layer for the water generation. The relative humidity scales with the performance.

  • PDF

Fluoroalkylation of the Surface of Hydrophilic Polyurethane Breathable Membrane (플루오르알킬화에 의한 친수성 폴리우레탄 필름 표면의 개질)

  • Hwang, Ji-Hyun;Oh, Kyoung-Suk;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2013
  • Swelling and subsequent deformation of membranes by water wetting are regarded as a prime drawback of hydrophilic polyurethane breathable film. Fluoroalkylated surface was prepared by reacting the film with hexamethylene diisocyanate(HDI) and 2-perfluorohexyl ethanol. IR spectra and XPS results showed that the fluoroalkyl group was successfully introduced to the film surface with hexamethylene linkage. Water contact angle was increased from $68.7^{\circ}$ up to $144.2^{\circ}$ with the degree of fluoroalkylation. Decrease in water-vapor permeability was minimized even for the film of highest fluoroalkylation.