• Title/Summary/Keyword: Water Tank Model

Search Result 523, Processing Time 0.024 seconds

Level control of single water tank systems using Fuzzy-PID technique

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.550-556
    • /
    • 2014
  • In this study, for the control of a single water tank system, a fuzzy-PID controller design technique based on a fuzzy model is investigated. For this purpose, a water tank system is linearized as a number of submodels depending on the operating point, and a fuzzy model is obtained by fuzzy combining. Each submodel is approximated as a first order time delay model, and a PID controller is designed using several existing tuning techniques. Then, through the fuzzy combination of this controller using the same method as that of the fuzzy model, a fuzzy-PID controller is designed. For the proposed technique, a simulation is performed using the fuzzy model of a water tank system, and the validity is examined by comparing its performance with that of a PID controller.

Development of TANK_GS Model to Consider the Interaction between Surface Water and Groundwater (지표수-지하수 상호흐름을 고려한 TANK_GS 모형의 개발)

  • Lee, Woo-Seok;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.893-909
    • /
    • 2010
  • The purpose of this study is to consider the interaction between surface water and groundwater in basin scale by developing TANK_GS model. The soil moisture structure of tank model with 3 tanks is improved to simulate the appropriate stream-aquifer interactions. Maximum likelihood method is applied to calibrate parameters with variance functions to deal with heteroscedasticity of residuals. The parameters of improved TANK_GS model and variance function are simultaneously estimated by Simulated Annealing method, a global optimization technique. The results of TANK-GE are compared to those of the SWMM-GE model which had been developed to consider the stream-aquifer interactions. The new TANK_GS model and SWMM-GE model are applied to Gapcheon basin, which belongs to Geum River basin. TANK_GS model showed better model performance compared to the original TANK model and characterized the relationship of stream-aquifer interactions as satisfactorily as the SWMM-GE model. The sustainable groundwater yield can be estimated for the regional water resources planning using the TANK_GS model

Development of Combination Runoff Model Applied by Genetic Algorithm (유전자 알고리즘을 적용한 혼합유출모형의 개발)

  • Shim, Seok-Ku;Koo, Bo-Young;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.201-212
    • /
    • 2009
  • The Tank model and the PRMS(Precipitation Runoff Modeling-modular System) model have been adopted to simulate runoff data from 1981 to 2001 year in the Seomgin-dam basin. However, the simulated runoff by each single model showed some deviations compared with the observed runoff, respectively. In this study a genetic algorithm combination runoff model has been proposed to minimize deviations between simulated runoff and observed runoff that should yield from single model such as Tank model or PRMS model. The proposed combination runoff model combining the simulated respective output of the Tank model and the PRMS model is to produce the optimum combination ratio of each single model applying to the genetic algorithm which may yield the minimum deviations between simulated runoff and observed one. The proposed combination runoff model has been applied to the Seomgin-dam basin. It has also been shown that the combination model by introducing optimal combination ratio should yield less deviations than single model such as the Tank model or the PRMS model.

Evaluation of the Tank Model Optimized Parameter for Watershed Modeling (유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가)

  • Kim, Kye Ung;Song, Jung Hun;Ahn, Jihyun;Park, Jihoon;Jun, Sang Min;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

The Applicability Study of SYMHYD and TANK Model Using Different Type of Objective Functions and Optimization Methods (다양한 목적 함수와 최적화 방법을 달리한 SIMHYD와TANK 모형의 적용성 연구)

  • Sung, Yun-Kyung;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.121-131
    • /
    • 2004
  • SIMHYD and TANK model are used to predict time series of daily rainfall-runoff of Soyang Dam and Youngcheon Dam watershed. The performances of SIMHYD model with 7 parameters and TANK model with17 parameters are compared. Three optimization methods (Genetic algorithm, Pattern search multi-start and Shuffled Complex Evolution algorithm) were applied to study-areas with 3 different types of objective functions. Efficiency of TANK model is higher than that of SIMHYD. Among different types of objective function, Nash-sutcliffe coefficient is found to be the most appropriateobjective function to evaluate applicability of model.

A Tank Model Shell Program for Simulating Daily Streamflow from Small Watersheds (Tank모형 쉘프로그램을 이용한 중소하천의 일유출량 추정)

  • 박승우
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 1993
  • A menu-driven shell program DSFS (Daily Streamflow Simulation Model), that can process the input data, optimize the parameters, execute the program, and graphically display the results of a modified tank model, was developed and applied to simulating daily streamflow from small watersheds. The model defines daily watershed evapotranspiration losses from potential values multiplied by monthly landuse coefficients and correction factors for soil water storage levels. The parameters were calibrated using observed hydrologic data for fifteen watersheds, and the results were correlated with watershed parameters to define empirical relationships. The proposed model was tested with streamflow data of ungaged conditions, and the simulation results overestimated the annual runoff.

  • PDF

Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose - (친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 -)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.