• 제목/요약/키워드: Water Supply Networks

Search Result 74, Processing Time 0.181 seconds

Feasibility Study on the Conjunctive Operation of Water Transmission Systems from Multiple Source with Applying EPAnet (수리해석(水理解析) 모형(模型)을 이용한 다수원(多水源) 송수계통(送水系統)의 연계(連繫) 운영(運營) 방안(方案) 경제성(經濟性) 평가(評價) - 거제시(市)를 대상(對象)으로 -)

  • Ryu, Tae-Sang;Ha, Sung-Ryong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.609-619
    • /
    • 2007
  • The objective of this paper is to evaluate the feasibility of conjunctive Operation between Multi-regional water supply networks from multiple source as a effective way to meet two conditions: to minimize the electric cost for providing water demanded and meet the water flow rate for satisfying customers. EPAnet Model is used to calculate a hydraulic water distribution condition based on an integrated operation of water supply systems located in short distance. The modeling was conducted on several simulation cases including the individual operation by existing inter-regional water supply networks within short distance, the conjunctive operation of more than two existing networks with valve fully closed and full open constraint. As a study distribution system, water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. It was found that a well-allocated water supply scheme based on a conjunctive operation promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. The result such as unit district costs, pareto optimum pump combination sets will be applied to the optimization for a conjunctive operation of existing inter-regional water supply networks within short distance.

Evaluation of Risk Factors to Detect Anomaly in Water Supply Networks Based on the PROMETHEE and ANP (상수도관망의 이상징후 판정을 위한 위험요소 평가 - PROMETHEE와 ANP 기법 중심으로)

  • Hong, Sung-Jun;Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.35-46
    • /
    • 2006
  • In this study, we proposed a layout of the integrated decision support system in order to prevent the contamination and to manage risk in water supply networks for safe and smooth water supply. We evaluated the priority of risk factors to detect anomaly in water supply networks using PROMETHEE and ANP techniques, which are applied to various Multi-Criteria Decision Making area in Europe and America. To develop the model, we selected pH, residual chlorine concentration, discharge, hydraulic pressure, electrical conductivity, turbidity, block leakage and water temperature as the key data item. We also chose pipe corrosion, pipe burst and water pollution in pipe as the criteria and then we present the results of PROMETHEE and ANP analysis. The evaluation results of the priority of risk factors in water supply networks will provide basic data to establish a contingency plan for accidents so that we can establish the specific emergency response procedures.

Hydraulic Adequacy of Connection Pipes in Water Supply Systems for Contingencies (비상시 용수공급을 위한 상수도 연계관로의 수리적 적정성 평가)

  • Han, Wanseob;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.679-687
    • /
    • 2013
  • Although stable and safe drinking water supply to the customers is a basic function of multi-regional water supply systems in Korea, most systems have their vulnerabilities in emergency time due to the branch-type. Application of connections from the other water supply system can provide a solutions for these tentative problems. This paper describes reduction planning of water supply accidents that can minimize a service interruption to customers in multi-regional water supply system by connecting pipe lines between local water supply systems in Mokpo city areas. The result of this study shows that Juam dam multi-regional water supply systems can cover all of the water shortage in southern parts of Jeonnam multi-regional water supply systems by transmitting water through connected pipes between local networks. This can be effective to supply water interactively in various contingencies, when a pipe line accident occurs in southern area of Jeonnam multi-regional water supply systems. On the contrary, southern area of Jeonnam multi-regional water supply systems can cover 99.5 %($62,500m^3/day$) of the water shortage of Juam dam multi-regional water supply systems when service interruptions caused by various pipe accidents occur in the system.

A Study on the Method of Energy Evaluation in Water Supply Networks (상수관망의 에너지 평가기법에 관한 연구)

  • Kim, Seong-Won;Kim, Dohwan;Choi, Doo Yong;Kim, Juhwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.745-754
    • /
    • 2013
  • The systematic analysis and evaluation of required energy in the processes of drinking water production and supply have attracted considerable interest considering the need to overcome electricity shortage and control greenhouse gas emissions. On the basis of a review of existing research results, a practical method is developed in this study for evaluating energy in water supply networks. The proposed method can be applied to real water supply systems. A model based on the proposed method is developed by combining the hydraulic analysis results that are obtained using the EPANET2 software with a mathematical energy model on the MATLAB platform. It is suggested that performance indicators can evaluate the inherent efficiency of water supply facilities as well as their operational efficiency depending on the pipeline layout, pipe condition, and leakage level. The developed model is validated by applying it to virtual and real water supply systems. It is expected that the management of electric power demand on the peak time of water supply and the planning of an energy-efficient water supply system can be effectively achieved by the optimal management of energy by the proposed method in this study.

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

Optimal Design of Water Supply System using Multi-objective Harmony Search Algorithm (Multi-objective Harmony Search 알고리즘을 이용한 상수도 관망 다목적 최적설계)

  • Choi, Young-Hwan;Lee, Ho-Min;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.293-303
    • /
    • 2015
  • Optimal design of the water supply pipe network aims to minimize construction cost while satisfying the required hydraulic constraints such as the minimum and maximum pressures, and velocity. Since considering one single design factor (i.e., cost) is very vulnerable for including future conditions and cannot satisfy operator's needs, various design factors should be considered. Hence, this study presents three kinds of design factors (i.e., minimizing construction cost, maximizing reliability, and surplus head) to perform multi-objective optimization design. Harmony Search (HS) Algorithm is used as an optimization technique. As well-known benchmark networks, Hanoi network and Gyeonggi-do P city real world network are used to verify the applicability of the proposed model. In addition, the proposed multi-objective model is also applied to a real water distribution networks and the optimization results were statistically analyzed. The results of the optimal design for the benchmark and real networks indicated much better performance compared to those of existing designs and the other approach (i.e., Genetic Algorithm) in terms of cost and reliability, cost, and surplus head. As a result, this study is expected to contribute for the efficient design of water distribution networks.

An Optimal Conjunctive Operation of Water Transmission Systems from Multiple Sources with applying EPAnet and KModSim Model (KModSim 모형(模型)에 의한 도시지역(都市地域) 다중수원(多衆水源) 송수관망간(送水管網間) 최적(最適) 연계(連繫) 운영(運營) 연구(硏究))

  • Ryu, Tae-Sang;Cheong, Tae-Sung;Ko, Ick-Hwan;Ha, Sung-Ryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.500-504
    • /
    • 2008
  • The objective of this paper is to evaluate the feasibility of using an optimization model as a effective way to search conjunctive operation scheme to meet two conditions; one is to minimize the electric cost for pumping and another is to meet the water demand for satisfying customers. The feasibility is confirmed as comparing the best combinations of pumps between multi-regional water supply networks from multiple sources which are obtained through an optimization modeling and EPAnet modeling. KModsim model, a network optimization model, was used to determine conjunctive operation scheme in the pipe system. KModsim, based on Lagrangian Relaxation algorithm, is useful for modeling network system and obtaining simultaneously pump combination and water allocation with given input option such as energy unit cost supplying from a source into a consumer, operating pumping combination. This study develops the procedure of determining optimal conjunctive operation scheme with using KModsim model. As a study region, the water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. The EPAnet hydraulic simulation result(Ryu et al, 2007, KSWW) gave input data for optimization model; energy unit price(won/$m^3$), water service available area etc.. It was assured that the combination of pump operation through optimum conjunctive operation is to be optimum scheme to obtain the best economic water allocation with comparison to the hydraulic simulation result such as electric cost and pump combination cases. The results obtained through the study are as follows. First, It was found that a well-allocated water supply scheme, the best combination of pump operation through optimum joint operation, promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. Second, an application of KModSim, a network model, gave the amount of water allocation from each source to a consumer with consideration of economic supply. Finally, in a service area available to supply through conjunctive operation of existing inter-regional water supply networks within short distance, a conjunctive operation is useful for determining each transmission pipeline's service area and maximizing the effectiveness of optimizations in pumping operation time.

  • PDF

Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network (고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발)

  • Seo, Jeewon;Kim, Kibum;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

A Study on the design and evaluation of connection pipes for stable water supply (용수공급 안정화를 위한 연계관로 설계 및 평가)

  • Chang, Yong-Hoon;Kim, Ju-Hwan;Jung, Kwan-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2012
  • The paper describes a design methodology that can select a proper reliability factor and apply the selected reliability factor into the real water distribution system. Reliability factors which are used for the assesment of water supply networks, can be categorized by a connectivity, a reachability, an expected shortage and an availability. Among these factors, an expected shortage is the most proper reliability factor in the aspect of economic evaluation. Therefore, the expected shortage is applied to draw a water supply reliability into Changwon water supply systems. And the economic pipe diameter can be determined as 600mm for a connection pipe in the pipe network from the estimation of the expected shortage. Also, a quantitative effect of the connection pipe can be expressed in terms of the reduction, which is estimated by the expected shortage of 30,269$m^{3}$ from 68,705$m^{3}$ at initial condition to 38,436$m^{3}$ under the connected condition with the diameter 600mm pipe.