• Title/Summary/Keyword: Water Sprays

Search Result 46, Processing Time 0.025 seconds

A Study on the Performance of Water Mist Spray Fire Protection System (미세물분무 소화성능에 관한 연구)

  • 김봉환;김용판;문철진;홍철현;이형욱;최현호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.572-578
    • /
    • 2003
  • The present study was numerically and experimentally performed to investigate the fire suppression performance of water mist spray subjected to thermal radiation in closed space. Downward-directed water mist sprays to interact with an under kerosine pool fire were investigated in test facility The mass mean diameters of water mist droplet were measured by PMAS under various flow conditions. The developed water mist spray nozzle was satisfied to the criteria of NFPA 750, Class 1. The mechanism of the fire suppression by water mist was attributed to the cooling of the fire surface which lead to suppressed of fuel evaporation. It was proved that the water mist spray system under lower pressures could be applied to underground fire protection system.

Analysis of spray cone angle of air assisted flash atomization (공기보조식 (air-assisted) 플래쉬 분무의 분무 각 확대 특성 연구)

  • Yu, Tae-U;Kim, Sae-Won;Bang, Byong-Ryeol
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • When the water jets heated up to the saturation temperature at a high line pressure are sprayed into a reduced (atmospheric) pressure through an air-assisted nozzle, the jets experience sudden exposure into a reduced pressure, get superheated and produce steam bubbles while atomization processes of jets are taking place. This process is called flash atomization. In this study the flash atomization of superheated water jets assisted by air has been studied. Sprays with flash atomization have been photographed at various water and air flow rates and water superheats. It has been found that the spray angle with flash atomization increases with water superheat and water flow rate but decreases with air flow rate. The degree of change of spray angle has been analyzed and correlated as a function of superheat, air and water flow rates.

  • PDF

An Experimental Study on the Behavior of Twin-Spray with Flow Interaction in a Condensable Environment (주위기체내에서의 두 액체분무간의 유동간섭현상에 대한 정상적 고찰)

  • 이상룡;정태식;한기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.326-334
    • /
    • 1986
  • The effects of flow interaction between adjacent sprays in twin-spray system on the spatial distribution of injected liquid (water) and drop size distribution in condensable (steam) environment were carefully observed through experiments. The spatial distribution of injected liquid in twin-spray system appears to be more uniform than the simple superposition of the spatial distributions of liquid obtained from each individual spray. Drop size distribution was obtained by using the immersion sampling technique. It was found that, in the twin-spray, the larger numbers of small drops are collected throughout the spraying region due to the increase of entrainment velocity of ambient steam compared with the case of simple superposition of each individual spray. Moreover, in the overlapped portion of the twin-spray, the drop size distribution was changed also due to the collision between large drops. As a result, the behavior of twin-spray system (and eventually multiple-spray system) can not be predicted precisely by simple superposition of the behaviors of each constituting spray. Hence, for the design of multiple spray system, the effect of flow interaction between sprays should be taken into account seriously.

RESEARCH ON MANAGEMENT AND ECONOMIC IN ALTERNATIVE AGRICULTURE IN THE UNITED STATES OF AMERICA (미국 대체농업의 경영 및 경제적인 연구)

  • 김종무
    • Korean Journal of Organic Agriculture
    • /
    • v.2 no.1
    • /
    • pp.16-23
    • /
    • 1993
  • The traditional farming method has very long history in the process of agricultural development. The application of chemical fertilizers production became most popular to increase quantities of agricultural production. The United States of America is one of largest countries in the world. There are at present 50 States and farming conditions are very different from each individual States. There are increasing trend of agricultural production by applying chemical fertilizers as well as sprays during last 50 years(1940-90). The disadvantages of conventional farming method were to destroy nature and human life. There were some other kinds of disadvantages such as nitriated contamination in drinking water both for human being and animals. The alternative farming method is one of new farming method reducing and/of non-application of chemical fertilizers and sprays in agricultural production. There is less economic research on alternative farming system about $5.444 economic advatages in organic farms comparing commercial farms at the same area. There are advantage of higher unit price level in orgnic products, decreasing chemical costs as well as effect of crop combinations. It is certainly necessary to have more empirical research on economic and management of alternative farming method in the United States of America. However, if there is economic advantage in alternative farming methods, the future development possibility of alternative farming method can be very bright in vear future. There might be more advantages such as soil conservation, better quality of agricultural products, better health conditions of farmer's and consumer's as well as keeping healthy environment of rural and urban areas.

  • PDF

Spray and Depositional Characteristics of Electrostatic Nozzles for Orchard Sprayers (과수 방제기용 정전대전 노즐의 분무 및 부착특성)

  • 강태경;이동현;이채식;이공인;최완규;노수영
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Spraying is one of the most efficient methods for pesticide and insecticide control. Generally, orchard sprayers(aircarrier sprayer) are used for such applications. However, when an orchard sprayer is used, only 20% of total amount of spray deposits on the target. The rest of spray are not only wasted but are also potential sources of environmental pollution. The research far the development of electrostatic spraying system for orchard sprayer was conducted to develop the new pesticide application technology for the reduction of environmental pollution and f3r the production of safe agricultural products. The spray characteristics for nozzles with the different charging methods were tested and the effect of electrostatic charge was analyzed, in the laboratory experiments. The results of this study indicate that the capacitive type of electrostatic spraying nozzle exhibits a large current deposition of water sprays on the sample target. The covering area ratio by conventional spraying system was 10.2%, while that of electrostatic sprays with pulse induction charging method gave the increased covering area ratio by 4.3 times.

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

A Study on the Spray Cooling Characteristics according to the Angle of Hot Heat Transfer Surface (고온 열전달면의 각도에 따른 분무냉각 특성에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.320-327
    • /
    • 2002
  • An experimental study of heat transfer from hot flat surface to water sprays was conducted in high temperature region. Heat transfer measurements for hot flat surface were made by 4 sheathed C-A thermocouples. Droplets volume flux were also measured-independently at a position in spray field. The test conditions included variations in droplets volume flux, subcooling of cooling water of $1.565\times10^{-3} to 14.089\times10^{-3}m^3/m^2s and 80 to $20^{\circ}C$ respectively. The effects of inclination angle on heat transfer were investigated and changes in inclination angle of hot flat surface affected heat transfer coefficients of high temperature region.

Radical Mist Generator Using a Water Plasma Jet and Its Sterilization Effect

  • Huh, Jin Young;Ma, Suk Hwal;Kim, Kangil;Choi, Eun Ha;Hong, Yong Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.175.1-175.1
    • /
    • 2016
  • In recent, tract infections such as atopic dermatitis, allergic rhinitis and a respiratory disease are increasing, giving rise to the atmospheric pollution, inflow of micro-size dust and side effect of humidifier disinfectant. In this context, the environment-friendly technology is required to eliminate airborne pathogens. We propose solution of the previous problems, making use of Radical Mist Generator (RMG). Existing technologies of air purification using a gas discharge produce harmful substances such as ozone, NOx, etc. However, the RMG uses a pure water as a plasma forming material. The RMG sprays the water mist, which contains reactive radicals to sterilize microorganisms. RMG is comprised of a power supply, plasma electrodes and a nozzle. In order to analyze the electrical characteristic and concentrations of reactive radicals, we employ an oscilloscope and a titration method. To test the sterilization effect of RMG, we used E.coli. We confirmed that E.coli was killed over 90%. Eventually, we expect that RMG can be promising tool for a purified system.

  • PDF

Comparison of the Characteristics of Spray Cooling between Water and Nanofluid Sprays (물과 알루미나 나노유체 분무의 분무냉각특성 비교)

  • Kang, B.S.;Lee, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.88-93
    • /
    • 2014
  • Nanofluids is that metallic or nonmetallic nanometer-sized particles are dispersed in liquid and they can be used in various fields to increase the heat transfer rate. This study conducted experiments to evaluate whether the cooling efficiency of nanofluids is better than that of water in spray cooling. A heated surface was designed and fabricated to make the temperature distribution be linear, which was confirmed by three thermocouple measurements under the heated surface. Spray cooling experiments were conducted using water, 0.2% wt. (weight), and 0.5% wt. $Al_2O_3$ nanofluids at the pressure of 0.2 MPa and 0.3 MPa. Based on the results, it is shown that the cooling efficiency of nanofluids is higher than that of water especially in the region of single phase heat transfer. As a result, we can expect that nanofluids can be used as efficient coolants in the cooling of electronic packages where the temperature of the heated surface is not high enough for boiling incipience.