• Title/Summary/Keyword: Water Scarcity

Search Result 94, Processing Time 0.022 seconds

Development of Small HSSF Constructed Wetland for Urban Green space (도시내 녹지공간 조성을 위한 소규모 HSSF 인공습지 개발)

  • Lee, Jeong-Young;Kang, Chang-Guk;Gorme, Joan B.;Kim, Soon-Seok;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 2011
  • Scarcity of water worldwide, increasing greenhouse gas emissions, increased energy consumption due to the Earth is threatened. Existing in the process of urban planning and development of forests, rivers and other natural ecosystems have been destroyed and that there was increased impervious pavement. Impervious pavement increase water circulation system to destroy the natural and urban water retention, infiltration and decreased evaporation. Nonpoint source pollution(NPS) occurs when rainfall impervious pavement and appeal directly to the river water inflow is adversely impacts of the situation. In this study, rainfall occurs impervious pavement NPS pollution reduction and temperature increase due to the increase in urban areas, and to solve heat island phenomenon is to develop small HSSF constructed wetland technology. The small HSSF constructed wetland sedimentation, filtration, adsorption, absorption by vegetation, including such mechanisms. Techniques for verification of the pilot-scale test was conducted. In the future domestic urban heat island phenomenon and restore the natural water cycle for the facilities will be used as a basis to develop.

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

A Study on Removal of Organic Matter and Chromaticity from Urine Using Chemical Oxidization Process (화학적 산화공정을 이용하여 소변의 색도 및 유기물 처리를 통한 재이용 기술 연구)

  • Shin, Sung-Hoon;Jung, Jong-Tai;Cho, Yong-Chul
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.109-115
    • /
    • 2018
  • This study was conducted to solve the water shortage problem by reclaiming urine from homes or public places and using it as cleaning water for toilets. The process used in this experiment is a chemical oxidation process combining ozone, hydrogen peroxide, and UV. We set the key substance that is to be removed as chromaticity and conducted the experiment to remove it. If the quantity or concentration of injected ozone, UV, and hydrogen peroxide is insufficient, then the chromaticity will initially increase due to low oxidizing power, and will later decrease. In addition, the efficiency of removing chromaticity appeared to be higher, depending on the quantity of ozone injected, for medium concentrated urine than highly concentrated urine. However, the absolute quantity of removed chromaticity was about 68% higher for highly concentrated urine, when 16 g/hr of ozone was injected. The higher the pH level, the reaction time and efficiency of removing chromaticity were higher, and in normal conditions, in reference to a pH of 8.55, there was a 6% difference in efficiency between a pH level of 5.05 and a pH level of 10.12. Finally, when processing urine through an ozone-only process, COD decreased steadily over time, but DOC did not decrease. This is because ozone reacts selectively with organic matter.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Comparison of Spectrum Sensing Algorithms for Cognitive Radio Systems (인지무선통신 시스템을 위한 스펙트럼 센싱 알고리즘의 비교)

  • Choi, Young-Hoon;Kim, Yoon-Hyun;Kim, Jin-Young;Lee, Jung-Hoon;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.195-201
    • /
    • 2011
  • Cognitive radio (CR), which is proposed as a technology that utilizes the frequency resources effectively, has studied to relive scarcity of the frequency resources. CR provides opportunistically under-utilize licensed frequency to the secondary user. However, in the wireless channels, due to the effect of fading and shadowing environments, spectrum sensing performance is compromised. Besides, to detect and classify various CR systems, a novel spectrum sensing algorithm is needed. Therefore, in this paper, we proposed the spectrum sensing algorithm with water marking scheme.

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

A Numerical Analysis Study on Two-phase Flow for the Development of High-efficiency Toilet (고절수형 위생도기 개발을 위한 이상유동 수치해석 연구)

  • An, Il-Yong;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5661-5668
    • /
    • 2012
  • In the era of water scarcity, saving toilet water is one of the most effective ways to save water. In this study, two-phase flow for the development of highly-efficient toilet has been analysed with VOF(Volume Of Fluid) method. Since the whole model requires extensive computing time, part of the whole model has also been adopted to reduce the analysis time. Four different rim models were considered for flow distribution analysis and sizes of rim holes were found to become more important rather than locations or numbers of rim holes in achieving flow distribution effectively. In addition, velocity and pressure of two-phase flow due to siphon phenomenon have been studied through the analysis of whole model. Therefore, this study provides a variety of fundamental data for the development of highly-efficient toilet.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.