• Title/Summary/Keyword: Water Scale Detection

Search Result 84, Processing Time 0.036 seconds

How do diverse precipitation datasets perform in daily precipitation estimations over Africa?

  • Brian Odhiambo Ayugi;Eun-Sung Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.158-158
    • /
    • 2023
  • Characterizing the performance of precipitation (hereafter PRE) products in estimating the uncertainties in daily PRE in the era of global warming is of great value to the ecosystem's sustainability and human survival. This study intercompares the performance of different PRE products (gauge-based, satellite and reanalysis) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over diverse climate zones in Africa and identifies regions where they depict minimal uncertainties in order to build optimal maps as a guide for different climate users. This is achieved by utilizing various techniques, including the triple collection (TC) approach, to assess the capabilities and limitations of different PRE products over nine climatic zones over the continent. For daily scale analysis, the uncertainties in light PRE (0.1 5mm/day) are prevalent over most regions in Africa during the study duration (2001-2016). Estimating the occurrence of extreme PRE events based on daily PRE 90th percentile suggests that extreme PRE is mainly detected over central Africa (CAF) region and some coastal regions of west Africa (WAF) where the majority of uncorrected satellite products show good agreement. The detection of PRE days and non-PRE days based on categorical statistics suggests that a perfect POD/FAR score is unattainable irrespective of the product type. Daily PRE uncertainties determined based on quantitative metrics show that consistent, satisfactory performance is demonstrated by the IMERG products (uncorrected), ARCv2, CHIRPSv2, 3B42v7.0 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0, and REGEN_ALL (gauge) during the study period. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage for different stakeholders.

  • PDF

High Resolution and Large Scale Flood Modeling using 2D Finite Volume Model (2차원 유한체적모형을 적용한 고해상도 대규모 유역 홍수모델링)

  • Kim, Byunghyun;Kim, Hyun Il;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.413-413
    • /
    • 2020
  • Godunov형 모형을 이용한 홍수모델링에서는 일반적으로 구조적 사각격자나 비구조적 삼각격자가 주로 적용된다. 2차원 수치모형을 이용한 홍수모델링에서 연구유역의 정보가 격자의 노드나 중심에 입력되므로 적용격자의 유형과 생성방법에 따라 모형의 입력자료 오차에 영항을 줄 수 있다. 따라서, 연구유역이 지형 변동성이 심한 지역이거나 흐름형상이나 흐름변동이 심한 구간이라면, 고해상도 격자를 통해 모형의 입력자료 오차를 최소화할 할 수 있다. 본 연구에서는 2가지 유형에 대한 연구를 수행하였다, 첫 번째는 홍수해석을 위한 2차원 모형의 격자형상과 해상도에 따른 홍수위 및 홍수범람범위를 비교·분석하는 연구를 수행하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 홍수가 발생한 영국의 Severn 강 유역이다. 연구유역의 홍수 모델링을 위한 지형자료는 3m 해상도의 LiDAR(Light Detection And Ranging)를 이용하여 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수위 및 홍수범람범위를 비교·분석하기 위해서 홍수 발생기간 동안 촬영된 4개(2000년 8월 11, 14, 15, 17일)의 ASAR(Advanced Synthetic Aperture Radar) 영상자료를 활용하였다. 즉, ASAR 영상으로 촬용된 최대범람시기 및 홍수류의 배수기를 활용하여 최대범람범위뿐만 아니라 홍수가 증가하는 시기와 하류단 배수로 인해 홍수가 감소하는 시기를 모두 포함하는 홍수범람범위에 대한 격자유형별 2차원 홍수범람모형의 계산 결과에 대해 비교하였다. 두 번째는 아마존 강 중류유역의 2,500K㎡ 면적에 해당하는 대규모 유역에 대해 SRTM(Shuttle Radar Topography Mission) 지형자료를 이용하여 홍수기와 갈수기에 대해 2차원 모델링을 수행하고 그 결과를 위성자료와 비교하였다.

  • PDF

SARS-CoV-2 detection and infection scale prediction model in sewer system (하수도 체계에서의 SARS-CoV-2 검출 및 감염 확산 예측)

  • Kim, Min Kyoung;Cho, Yoon Geun;Shin, Jung gon;Jang, Ho Jin;Ryu, Jae Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.392-392
    • /
    • 2022
  • 세계적 규모의 팬데믹 감염병의 출현은 전 세계적으로 경제적, 문화적, 사회적 파급효과가 매우 강력하며 전 인류를 위협하고 있다. 최근에 발병한 중증급성 호흡기질환 코로나바이러스 2(Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2)는 2019년 12월 중국 우한에서 첫 보고 되었고 2022년 현재까지 종식되지 않고 있으며 바이러스의 전파력과 치명률이 높고 무증상 감염상태일 때에도 전염이 가능하여 현재 역학조사의 사후적 대응에 대한 한계가 있어 선제적 대응을 위한 수단이 필수 불가결해지고 있는 실정이다. 하수기반역학(Waste Based Epidemiology, WBE)이란 하수처리장으로 유입되기 전의 하수를 분석하여 하수 집수구역 내 도시민의 생활상을 예측하는 것으로 하수로 배출된 감염자의 분비물 및 배설물 속 바이러스를 하수관로에서 신속하게 검출함으로써 특정지역의 감염성 질환 전파 정도와 유행하는 타입(변이)등을 분석하고 기존 역학조사의 문제점을 극복할 수 있으며 선제적인 대응이 가능하다. 현재 COVID-19의 대유행과 관련하여 WBE를 기반으로 한 다양한 연구가 진행되고 있으며 실제 환자의 발생과 상관관계가 있음이 확인되고 있고 백신 접종과 새롭게 발생한 변이바이러스의 관계 속에서 발생하는 변수를 고려한 모델이 없다는 점을 들어 새로운 감염병 확산 예측 모델에 대한 필요성 또한 커지고 있다. 본 연구에서는 병원에서부터 하수처리장까지의 하수관거와 하수처리장에서의 SARS-CoV-2 검출농도 및 거동을 파악하는 것을 목적으로 하고 있으며 COVID-19의 감염규모 확산에 관한 방법론에서 수학적모델 (Euler Method, RK4 Method, Gillespie Algorithm)과 딥러닝 기반의 Nowcasting model과 Fore casting model을 살펴보고자 한다.

  • PDF

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique (Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가)

  • Kim, Wanyub;Jeong, Jaehwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.

Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

  • Wang, Huili;Ning, Tingting;Hao, Wei;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages.

Comparison of CTD Cast and CTD Tow-yo Methods for Detecting Hydrothermal Plume (열수 플룸 검출을 위한 CTD Cast와 CTD Tow-yo 방법 비교)

  • Son, Juwon;Joo, Jongmin;Ham, Dong Jin;Yang, Seungjin;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.179-187
    • /
    • 2014
  • Directly searching for undiscovered hydrothermal vent sites is inefficient due to the practical difficulty of comprehensively imaging vent fields. Thus, most searches for hydrothermal vent sites rely on the detection of hydrothermal plumes from water column observation. Detecting and measuring the hydrothermal plumes are the most efficient way to infer the presence and distribution of hydrothermal vents. Both the array of vertical casting and lateral towing are the most common methods to discover hydrothermal plumes. In this study, we compared results of cast and tow-yo operations along the same section of a spreading center with a distance of 20.5 km in the North Fiji Basin for mapping hydrothermal plumes. Operation of CTD tow-yo provides a detailed pattern of plumes which enable us to locate the hydrothermal vents. On the other hand, identification of hydrothermal activity can be determined effectively by CTD cast with additional analysis of geochemical tracers. Reduction in the operating time is another advantage of CTD cast operation, especially for regional-scale survey. Our results show that the combination of CTD cast and tow-yo would improve the efficiency of the hydrothermal plume survey to locate new hydrothermal vent sites.

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

Assessing Hydrologic Impacts of Climate Change in the Mankyung Watershed with Different GCM Spatial Downscaling Methods (GCM 공간상세화 방법별 기후변화에 따른 수문영향 평가 - 만경강 유역을 중심으로 -)

  • Kim, Dong-Hyeon;Jang, Taeil;Hwang, Syewoon;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.81-92
    • /
    • 2019
  • The objective of this study is to evaluate hydrologic impacts of climate change according to downscaling methods using the Soil and Water Assessment Tool (SWAT) model at watershed scale. We used the APCC Integrated Modeling Solution (AIMS) for assessing various General Circulation Models (GCMs) and downscaling methods. AIMS provides three downscaling methods: 1) BCSA (Bias-Correction & Stochastic Analogue), 2) Simple Quantile Mapping (SQM), 3) SDQDM (Spatial Disaggregation and Quantile Delta Mapping). To assess future hydrologic responses of climate change, we adopted three GCMs: CESM1-BGC for flood, MIROC-ESM for drought, and HadGEM2-AO for Korea Meteorological Administration (KMA) national standard scenario. Combined nine climate change scenarios were assessed by Expert Team on Climate Change Detection and Indices (ETCCDI). SWAT model was established at the Mankyung watershed and the applicability assessment was completed by performing calibration and validation from 2008 to 2017. Historical reproducibility results from BCSA, SQM, SDQDM of three GCMs show different patterns on annual precipitation, maximum temperature, and four selected ETCCDI. BCSA and SQM showed high historical reproducibility compared with the observed data, however SDQDM was underestimated, possibly due to the uncertainty of future climate data. Future hydrologic responses presented greater variability in SQM and relatively less variability in BCSA and SDQDM. This study implies that reasonable selection of GCMs and downscaling methods considering research objective is important and necessary to minimize uncertainty of climate change scenarios.