• Title/Summary/Keyword: Water Safety Education

Search Result 126, Processing Time 0.024 seconds

The Current technology state of "Supervisory Control And Data Acquisition System(SCADA)" and development plan in the city-gas industry (긴급제언 - 원격감시제어시스템의(SCADA) 기술현황과 도시가스산업에서의 발전방안)

  • Choi, In-Hwan
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • The related industrial technologies are also being developed in medicine, education, the military, transportation, process management, security management and information technology industries due to a rapid progress in telecommunications technology. The supervisory remote control system is based upon telecommunications technology. The supervisory remote control systems are used in various ways such as city gas, water supply and drainage, environment, power, communication and device control fields. The supervisory remort control system became a solution with complex systems and important technologies in electricity, city gas filed that require safety management skills. The supervisory remote control system as a special technology has a lot of practical applications. In this paper, Let me examine the present status of remort control system applications and present development plans and alternatives in city-gas industrial technology.

  • PDF

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing;Zhu, Zhiyuan;Liu, Fang;Li, Haoxin;Jiang, Zhengwu
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Phenomenological Study of Skin Scuba Participants in Busan Region (부산지역 스킨스쿠버 참여자의 현상학적 연구)

  • JANG, Jae-Yong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.148-157
    • /
    • 2017
  • This study has studied the phenomenon exclusive to the activity of skin scuba among marine sports in Busan region, and such empirical studies are for the development of skin scuba, and even of the entire marine sports, and in order to achieve such objective, the study method centered around qualitative study method of in-depth interview, participatory observation, and documentation study, the results of which are as follows. First is the advantage of the local environment as an open-water location. This study area has beaches of pebbles, and the underwater is also comprised of pebbles up to a certain distance, securing a superior underwater visibility compared to the sand of other Busan regions, and such local environment is thought to be an advantage of skin scuba activity. Second is the satisfaction of accessibility. This study area had an advantage in participant accessibility, which is thought to act as a good strength for the marine sports development of this area in the future. Third is the satisfaction of education. The club instructors of this study area had various marine sports-related licenses such as skin scuba, along with marine lifeguard trainer qualifications to prepare against safety accidents, which are also thought to have positive influences on the education satisfaction for beginners. Fourth is the inconvenient subsidiary facility. This study area has great natural environment for open waters, but the subsidiary facilities of the club for skin scuba activity was found to be very inconvenient by this study, and for the future development of skin scuba, the improvement of subsidiary facilities should be considered. Fifth is the inconvenient parking facilities. The participants in this study area agreed upon the inconvenience of the parking issue alongside the subsidiary facilities. There are always parking issues near the coasts of Busan region, and in order to resolve such issues, active assistance from the City of Busan and each local government, and if such methods are well proposed, the conflict between the marine sports participants and local residents shall be resolved, it would play a great role in the development of marine sports.

Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action

  • Li, Ping;Sun, Xinfei;Chen, Junjun;Shi, Jiangwei
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.561-571
    • /
    • 2021
  • Cofferdams made of teel sheet piles are commonly utilized as support structures for excavation of sea-crossing bridge foundations. As cofferdams are often subject to tide variation, it is imperative to consider potential effects of tide on stability and serviceability of sheet piles, particularly, ultralong steel sheet piles (USSPs). In this study, a real USSP cofferdam constructed using new construction technology in Nanxi River was reported. The design of key parts of USSP cofferdam in the presence of tidal action was first introduced followed by the description of entire construction technology and associated monitoring results. Subsequently, a three-dimensional finite-element model corresponding to all construction steps was established to back-analyze measured deflection of USSPs. Finally, a series of parametric studies was carried out to investigate effects of tide level, soil parameters, support stiffness and construction sequence on lateral deflection of USSPs. Monitoring results indicate that the maximum deflection during construction occurred near the riverbed. In addition, measured stress of USSPs showed that stability of USSP cofferdam strengthened as construction stages proceeded. Moreover, the numerical back-analysis demonstrated that the USSP cofferdam fulfilled the safety requirements for construction under tidal action. The maximum deflection of USSPs subject to high tide was only 13.57 mm at a depth of -4 m. Sensitivity analyses results showed that the design of USSP cofferdam system must be further improved for construction in cohesionless soils. Furthermore, the 5th strut level before concreting played an indispensable role in controlling lateral deflection of USSPs. It was also observed that pumping out water before concreting base slab could greatly simplify and benefit construction program. On the other hand, the simplification in construction procedures could induce seepage inside the cofferdam, which additionally increased the deflection of USSPs by 10 mm on average.

A Study on the Coastal Navigation Safety by Navigational Risk Assessment Model (항해위험평가모델에 의한 연안역 항해의 안전 제고에 관한 연구)

  • KIM, Won-Ouk;KANG, Song-Jin;YOUN, Dae-Gwun;BAE, Jun-Young;KIM, Chang-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.201-208
    • /
    • 2017
  • The major cause of the marine accidents is the collision with a moving object such as ship as well as the fixed object such as breakwater. Therefore, the most effective way to reduce the maritime ship accidents is the prevention of collision. In order to decrease the collision, it is principle that the navigation officer promptly judges the dangerous condition and makes the quick response. The ship does not allow any object or other ships approaching its surrounded area called ship area so that it prevents the collision. Generally, the ship which has high speed or poor maneuvering capability shall be managed from the distance so that the other ship does not invade its ship domains(watching distance, blocking distance). Accordingly, this study sets the navigational risk assessment model by applying ship dynamic domain and collision judgement method considered ship length, speed and navigational capability. It also reviewed the validity of the model and evaluated the perilous water way (Maenggol Channel) and a curved route near Maenggol Channel. As a result, in case of a ship with 100m in length passing Maenggol Channel, it represented "warning" level before 1.5nm to the entry, "dangerous"level 0.75nm before to it and "very dangerous" level 0.5nm before to it and then "dangerous"level again up to the entry. Applying to the curved route also showed the same results as the Narrow Channel or Maenggol Channel. This analysis highly matched with the actual navigation results. In the future, this model will be useful for coastal navigation safety chart development and safety evaluation for route or port development. It also allows to evaluate the dangerous route or the best route by applying the result into ECDIS so that it will finally help to reduce the marine accidents. Eventually the model will be effective for the marine traffic simulation evaluation forced by Maritime Traffic Safety Act.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Analysis of the factors associated with awareness of community water fluoridation program (수돗물불소농도조정사업에 대한 인지도와 관련요인 분석)

  • Kim, Yu-Jin;Baek, So-Yeong;An, Se-Yeon;Lee, Mi-Hui;Lee, Seon-Yeong;Lee, Yeon-Ju;Lee, Yu-Ri;In, Mi-Hui;Han, Da-Eun;Choi, Jun-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.5
    • /
    • pp.871-879
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the factors related to the awareness level of community water fluoridation program. Methods : 700 subjects were surveyed among the residents living in Incheon Metropolitan City. Data were collected on awareness of community water fluoridation program, general factors, oral health behavior, self-reported oral health and oral health interest. The factors related to the awareness level of community water fluoridation program were analyzed by t-test, a one way ANOVA and multiple linear regression analysis. Results : 1. Subjects' ages were 40~59 years, monthly average incomes were more than 3 million won and higher their educational levels had a higher awareness level of community water fluoridation program(p<0.01). 2. People who brushed their teeth more than three times a day, used oral hygiene devices, and had periodic oral examination and removed plaques were had higher awareness level of community water fluoridation program(p<0.01). Especially, the use of oral hygiene devices was the strongest factor in relation with the awareness level of community water fluoridation program(p<0.01). 3. People who had a fine self-reported oral health, highly interested in dental hygiene and made an effort to keep oral health were had higher awareness level of community water fluoridation program(p<0.001). Conclusions : The awareness level of community water fluoridation program was related to oral health behavior, self-reported oral health and oral health interest. So, in order to expand the areas for community water fluoridation program, it is important to educate to the right information about objectives, safety, dental caries preventing effect of the community water fluoridation program. And the education and publicity on general oral health will have an affirmative effect on expanding community water fluoridation program.

Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island (제주지역 하수처리수의 농업용수 재이용 안전성 평가)

  • Son, Yeong Kwon;Rhee, Han-Pil;Kim, Haedo;Choi, Sun Wha;Kim, Jeong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Mercury Exposure among Garbage Workers in Southern Thailand

  • Decharat, Somsiri
    • Safety and Health at Work
    • /
    • v.3 no.4
    • /
    • pp.268-277
    • /
    • 2012
  • Objectives: 1) To determine mercury levels in urine samples from garbage workers in Southern Thailand, and 2) to describe the association between work characteristics, work positions, behavioral factors, and acute symptoms; and levels of mercury in urine samples. Methods: A case-control study was conducted by interviewing 60 workers in 5 hazardous-waste-management factories, and 60 matched non-exposed persons living in the same area of Southern Thailand. Urine samples were collected to determine mercury levels by cold-vapor atomic absorption spectrometer mercury analyzer. Results: The hazardous-waste workers' urinary mercury levels (10.07 ${\mu}g/g$ creatinine) were significantly higher than the control group (1.33 ${\mu}g/g$ creatinine) (p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene, were significantly associated with urinary mercury level (p < 0.001). The workers developed acute symptoms - of head-aches, nausea, chest tightness, fatigue, and loss of consciousness at least once a week - and those who developed symptoms had significantly higher urinary mercury levels than those who did not, at p < 0.05. A multiple regression model was constructed. Significant predictors of urinary mercury levels included hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask, trousers, and gloves), and personal hygiene behavior (ate snacks or drank water at work, washed hands before lunch, and washed hands after work). Conclusion: Changing garbage workers' hygiene habits can reduce urinary mercury levels. Personal hygiene is important, and should be stressed in education programs. Employers should institute engineering controls to reduce urinary mercury levels among garbage workers.