• Title/Summary/Keyword: Water Quality by Flow Condition

Search Result 100, Processing Time 0.034 seconds

Comparison of the Net Inflow Rates of Seawater Exchange Breakwater of Different Shapes (해수교환방파제의 형상별 순유입유량 특성 비교)

  • Lee, Dal-Soo;Lee, Chang-Hoon;Oh, Young-Min;Chun, In-Sik;Kim, Chang-Il
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.393-397
    • /
    • 2003
  • The seawater exchange breakwaters can be effectively employed to conserve or enhance the water quality inside harbors by transmitting the exterior water into the harbor. In the present study, three shapes of the breakwater, that is, the flow conduit embedded type, the wave chamber type and the oscillating water channel type are compared far their water exchanging capability through regular wave experiments. The results show that the net influx of water appears differently depending on wave period for each breakwater type. The net influx of the wave chamber type is much greater than that of the flow conduit embedded type. It is also ascertained that the influx of the oscillating water channel type can be greatly enhanced by attaining the resonance condition inside the channel at the wave periods frequently occurring at the fields where the breakwaters are to be installed.

Critical Heat Flux in Uniformly Heated Rod Bundle Under Wide Range of System Pressures (광범위한 압력조건하에서 균일 가열 수직 봉다발에서의 임계열유속)

  • Moon, Sang-Ki;Chun, Se-Young;Choi, Ki-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.195-200
    • /
    • 2001
  • An experimental study on critical heat flux (CHF) has been performed for water flow in a uniformly heated vertical 3 by 3 rod bundle under low flow and a wide range of pressure conditions. The objective of this study is to investigate the parametric trends of CHF with 3 by 3 rod bundle test section where three unheated rods exist. The general trends of the CHF are coincident with previous understandings. At low flow and system pressure above 3 MPa, some critical qualities are larger than 1.0 due to counter-current flow in test sections. Since there is a supply of water to the heated section from unheated section, the maximum CHFs at system pressure between 2 and 4 MPa are not shown.

  • PDF

Water Resources Management Challenge in the Citarum River Basin, Indonesia

  • Wicaksono, Albert;Yudianto, Doddi;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.198-198
    • /
    • 2016
  • The Citarum River Basin is the biggest river basin in West Java Province, Indonesia and it plays strategic roles in providing water for irrigation, domestic and industrial uses, and power generation, besides controlling the flood during rainy season. Flowing through seven major cities makes the river flow and water demand are vulnerable to land use change around the river. The present water resources management has involved the regulator, operator, and users in deciding an appropriate water management plan for the entire basin. The plan includes an operation plan for three reservoirs, construction or maintenance of the river channel, and water allocation for all users along the river. Following this plan, a smaller operation group will execute and evaluates the plan based on the actual flow condition. Recently, a deforestation, environment degradation, river sedimentation, a rapid growth of population and industry, also public health become new issues that should be considered in water basin planning. Facing these arising issues, a new development program named ICWRMIP was established to advance the existing management system. This program includes actions to strengthen institutional collaboration, do the restoration and conservation of the river environment, improve water quality and public health, also advance the water allocation system. At present, the water allocation plan is created annually based on a forecasted flow data and water usage prediction report. Sometimes this method causes a difficulty for the operator when the actual flow condition is not the same as the prediction. Improving existing system, a lot of water allocation studies, including a development of the database and water allocation simulation model have been placed to help stakeholders decide the suitable planning schemes. In the future, this study also tries to contribute in advancing water allocation planning by creating an optimization model which ease stakeholders discover a suitable water allocation plan for individual users.

  • PDF

Variations of Limnological Functions in a Man-made Reservoir Ecosystem during High-flow Year vs. Low-flow Year

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.487-494
    • /
    • 2009
  • We compared spatial and temporal variations of water chemistry between high-flow year ($HF_y$) and low-flow year ($LF_y$) in an artificial lentic ecosystem of Daechung Reservoir. The differences in the rainfall distributions explained the variation of the annual inflow and determined flow characteristics and water residence time and modified chemical and biological conditions, based on TP, suspended solids, and chlorophylla, resulting in changes of ecological functions. The intense rainfall and inflow from the watershed resulted in partial disruption of thermal structure in the metalimnion depth, ionic dilution, high TP, and high suspended solids. This condition produced a reduced chlorophyll-a in the headwaters due to low light availability and rapid flushing. In contrast, reduced inflow and low rainfall by drought resulted in strong thermal difference between the epilimnion and hypolimnion, low inorganic solids, high total dissolved solids, and low phosphorus in the ambient water. The riverine conditions dominated the hydrology in the monsoon of $HF_y$ and lacustrine conditions dominated in the $HF_y$. Overall data suggest that effective managements of the flow from the watershed may have an important role in the eutrophication processes.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Characteristics of Red Tide Blooms in the Lower reaches of Taehwa River (태화강 하류의 적조발생 특성)

  • Cho, Hong-Je;Yoon, Yeong-Bae;Kang, Ho-Seon;Yoon, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.453-462
    • /
    • 2011
  • This study was analyzed to determine the cause of red tide at 10 and 30 days antecedental rainfall, stage and discharge in the Taehwa River, tidal data of Ulsan port, also, it was analyzed variation of red tide population, salinity, BOD, COD, T-N, T-P at S1, S2 each point. Most of the red tide in the Taehwa River occurred by provision of proper nutrients with antecedent, the proximity between discharge and low-flow capacity, and stage and discharge of stabilized condition after the sea water was inflowed by maximum tide difference. Red tide population is not nearly related to the change of salinity, the Taehwa River seems specific features of Non-coastal rivers downstream, because red tide was occurred when salinity quite low-end condition.

A Study on Nitrification in tim Main Stream of the Naktong River (낙동강 본류에 대한 질화작용의 조사연구)

  • 김형섭;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1983
  • This study was carried out to investigate nitrification in the main stream of the Naktong river for two times, 12-13 August and 23-26 September 1982. The results of this study were as follows : 1. The increase of nitrogen concentration was due to inflow of Geumho river, which was polluted by the municipal and industrial wastewater of Daegu city. 2. The rate constant of ammonia calculated for three reaches was high according to the stream flow and was eminently low in the reach from Goroung to Gangjung. (0.068-0.116 $day^{-1}$). This phenomena might be attributed to the sublethal or even lethal effect upon aquatic life by relatively low DO concentration and high heavy metal concentration. 3. DO consumption rate by nitrification was highest for the reach from Goroung to Daeam where was affected by Geumho river. (56.7-147.8%). This phenomena might be attributed to low DO concentration and high nitrogen concentration. Especially, the less stream flow was, the higher DO consumption was. And so, nitrification in the station where is low DO concentration, especially under the low flow condition, might cause more serious water quality management problem. Therefore, for the purpose of effective conservation of water quality in the Naktong river, it was suggested that We have more concern about the nitrogen compound, and more study on the nitrification phenomena.

  • PDF

A new approach to design isolation valve system to prevent unexpected water quality failures (수질사고 예방형 상수도 관망 밸브 시스템 설계)

  • Park, Kyeongjin;Shin, Geumchae;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1211-1222
    • /
    • 2022
  • Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

A research on the design parameters for a double-transmission main system for sustainable water supply (이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구)

  • Hyun, Inhwan;Hong, Juneui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

A study on the simulation method for the flushing flowrate and velocity in the watermain using a hydrant and a drain valve (소화전과 이토변을 이용한 플러싱 적용 시 관 내 세척유량과 유속 모의 방안에 관한 연구)

  • Gim, ARin;Lee, Eunhwan;Lee, SongI;Kim, kwang hyun;Jun, Hwandon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1251-1260
    • /
    • 2022
  • Recently, due to the deterioration of watermains and the detachment of scale which is accumulated on the watermain surface, water quality accidents in a water supply network occur frequently. As scale accumulated on watermains is stabilized, it may not cause water quality accidents under the normal operating condition. However, due to water hammer or transient flow caused by the abrupt velocity and/or direction of flow change, it can be detached from the watermain surface resulting in water quality accidents. To prevent these kinds of water quality accidents, it is required to remove scale by watermain cleaning regularly. Many researches about flushing which is the most popular water cleaning method are focused on the desirable velocity criteria and the cleaning condition to accomplish the effect of flushing whereas less amount of research effort is given to develop a method to consider whether the desirable velocity for flushing can be obtained before flushing is performed. During flushing, the major and minor headloss is occurred when flushing water flows through a hydrant or drain valve. These headloss may slow down the velocity of flushing water so that it can reduce the flushing effect. Thus, in this study, we suggest a method to simulate the flow velocity of flushing water using "MinorLoss Coefficient" and "Emitter Coefficient" in EPANET. The suggested method is applied to a sample network and the water supply network of "A" city in Korea to compare the flushing effect between "flushing through a hydrant" and "flushing through a drain valve". In case of "flushing through a hydrant", if the hydraulic condition ocurring from a watermain pipe connecting to the inlet pipe of a hydrant to the outlet of a hydrant is not considered, the actual flowrate and velocity of a flow is less than the simulated flowrate and velocity of a flow. In case of "flushing through a drain valve", the flushing velocity and flowrate can be easily simulated and the difference between the simulated and the actual velocity and flowrate is not significant. Also, "flushing through a drain valve" is very effective to flushing a long-length pipe section because of its efficiency to obtain the flushing velocity. However, the number and location of a drain valve is limited compared to a hydrant so that "flushing through a drain valve" has a limited application in the field. For this reason, the engineer should consider various field conditions to come up with a proper flushing plan.