• Title/Summary/Keyword: Water Quality Standards

Search Result 475, Processing Time 0.021 seconds

A Non-parametric Analysis of the Tam-Jin River : Data Homogeneity between Monitoring Stations (탐진강 수질측정 지점 간 동질성 검정을 위한 비모수적 자료 분석)

  • Kim, Mi-Ah;Lee, Su-Woong;Lee, Jae-Kwan;Lee, Jung-Sub
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.651-658
    • /
    • 2005
  • The Non-parametric Analysis is powerful in data test especially for the non- normality water quality data. The data at three monitoring stations of the Tam-Jin River were evaluated for their normality using Skewness, Q-Q plot and Shapiro-Willks tests. Various constituent of water quality data including temperature, pH, DO, SS, BOD, COD, TN and TP in the period of January 1994 to December 2004 were used as dataset. Shapiro-Willks normality test was carried out for a test 5% significance level. Most water quality data except DO at monitoring stations 1 and 2 showed that data does not normally distributed. It is indicating that non-parametric method must be used for a water quality data. Therefore, a homogeneity was conducted by Mann-Whitney U test (p<0.05). Two stations were paired in three pairs of such stations. Differences between stations 1, 2 and stations 1, 3 for pH, BOD, COD, TN and TP were meaningful, but Tam-Jin 2 and 3 stations did not meaningful. In addition, a narrow gap of the water quality ranges is not a difference. Categories in which all three pairs of stations (1 and 2, 2 and 3, 1 and 3) in the Tam-Jin River showed difference in water quality were analyzed on TN and TP. The results of in this research suggest a right analysis in the homogeneity test of water quality data and a reasonable management of pollutant sources.

Cognition on Quality and Cost of Small Drinking Water Plants in Gyungbuk Region (경북지역 소규모수도시설 이용자의 수질.비용에 대한 인식)

  • Kang, Mee-A;Yang, Myeong-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • Groundwater is an essential drinking water source in Gyungbuk, South Korea. The primary source of nitrate in groundwater is from nitrogen fertilizers. Efficient management of a small drinking water plant requires a good understanding of its status such as the objective and the cognition of users. The objective of this study is to understand user situation and produce useful user-friendly policy based on user cognition. Most people who participated in this study, should take their groundwater from a good quality source. Even though they would like to have a good facility for getting safe water, they were reluctant to do it due to the cost used. It means that people who drink groundwater have no idea that health safety is affected by groundwater quality. The volume used depended upon personal activities such as agriculture and stockbreeding. We can easily find groundwater with nitrate that exceeds drinking water standards. Therefore, we have to carry out groundwater management with two categories ; 1) drinking water only and 2) others according to objectives in small drinking water systems.

Waste Water Treatment Using Constructed Wetland and Pond System (인공습지와 연못시스템을 이용한 오수처리)

  • Kim, Min-Hee;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.470-474
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the waste water treatment using constructed wetland and pond system. The effluent of the wetland system in winter often exceeded effluent water quality standards for sewage treatment plant, therefore, pond system could be applied to additional system. As a result, removal rate of $BOD_{5}$, SS was 84.4%, 81.5% and effluent concentration was 4.6mg/L and 5.0mg/L respectively, when surface water of pond system was discharged in March. So we concluded that pond system stored wetland effluent in winter and discharged surface water of pond system in March, so met water quality standard.

  • PDF

Estimating Freshwater Fish Intake for Human Health Risk Assessment Using Korea National Health and Nutrition Examination Survey (국민건강영양조사를 활용한 담수어패류 섭취량 산정: 위해성 평가를 위한 파라메타 도출)

  • Kwak, Jin Il;Oh, Kyungwon;Kweon, Sanghui;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.165-169
    • /
    • 2013
  • Freshwater fish intake is a critical parameter for deriving water quality criteria and water quality standards for protection of human health based on human health risk assessment. Although the freshwater fish intake parameter should be accurate and representative of Korean fish consumption for the water quality criteria to be reliable, data are limited in Korea and have low reliability. In this study, Korean National Health and Nutrition Examination Survey data from 2008-2010 were analyzed to reevaluate freshwater fish consumption. Based on these results, an average consumption rate of 3.0 g/day per person, a $90^{th}$ percentile consumption rate of 0.0 g/day per person, an average consumption rate of 65.7 g/day per fish consumer, and a $90^{th}$ percentile consumption rate of 153.4 g/day per fish consumer were proposed for derivation of water quality criteria using a conservative approach and various exposure scenarios.

Water Quality Forecasting System by Reliability Analysis in the Nakdong River (낙동강에서의 신뢰도해석에 의한 수질예보시스템의 개발)

  • Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.411-420
    • /
    • 1997
  • QUAL2E-AFOSM model is developed to forecast the water quality by reliability analysis in the Nakdong River. A varied-flow analysis is performed for the reach of Waegwan to Mulgeum to estimate hydraulic parameters. An optimization technique by BFGS method is applied to determine the optimum reaction parameters and calibrations and verifications are performed based on these parameters. A reliability analysis for the stochastic analysis in a river is studied using the AFOSM method. The variations of water quality and discharge in the headwater, tributaries, and reaction coefficients are considered. Risks of violating existing water quality standards at several loactions in the Nakdong River are computed by using the QUAL2E-AFOSM method. The computed results computed by QUAL2E-AFOSM model agree with those of the Monte-Carlo method in QUAL2EU model.

  • PDF

A Developmental Methodology of Environmental Impact Assessment: Application of Health Risk Assessment (환경영향평가에 있어서 건강위해성평가 기법의 활용방안에 관한 연구)

  • Koo, J.K.;Chung, Y.
    • Journal of Environmental Impact Assessment
    • /
    • v.1 no.1
    • /
    • pp.51-59
    • /
    • 1992
  • Environmental Impact Assessment(EIA) is defined as an activity designed to identify and predict the impact on the environment. In the process of an EIA, the quantitative evaluation is generally performed for the air and water quality which have the national environmental quality standards. But the predicted values for the air and water quality are simply compared to the environmental standards. At present, the EIA process of Korea has no consideration for the possible human health risk resulting from the development projects. Environmental Health Impact Assessment(EHIA) is an applied methodology of EIA to estimate the acceptable health risk caused by a specified level of environmental pollutants. Estimating the excessive lifetime risk that is a possibility of dying of a certain disease by environmental contaminants, is useful as an evaluation technique of EHIA. It is recommanded the decision-makers to make efficient use of EHIA not only the development projects but also legislative proposals, policies and programmes in future.

  • PDF

Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

Feasibility of Changing or Canceling Designated Mariculture Management Areas in Ongjin-gun, Korea (옹진군 어장관리해역 해제 및 변경 타당성 평가)

  • Kang, Sungchan;Kim, Hyung Chul;Hwang, Un-Ki;Sim, Bo-ram;Kim, Chung-sook;Lee, Won-Chan;Hong, Sokjin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.576-588
    • /
    • 2017
  • Some of the mariculture grounds near Ongjin-gun, Korea, were designated as mariculture management areas in 2007. Areas are so designated when the environmental quality of the mariculture ground deteriorates or there is an outbreak of hypoxia or harmful red tide that kills mariculture organisms. We surveyed the water and sediment quality and examined the mortality of mariculture organisms in the Ongjin-gun mariculture area. In a survey conducted in 2016, the water quality was better than the environmental quality standards for mariculture grounds, excepts for dissolved inorganic nitrogen, and the sediment quality was good. However, there was still mortality of mariculture organisms in some of the designated management areas. The areas that met the environmental quality standards should be delisted and the areas in which we observed mortality should be classified as management areas. This will enable the sustainable development of aquaculture and preserve healthy mariculture grounds.

Analysis of Water Qulity changes & Characterization at the Watershed in Han River Basin for Target indicator in TMDLs (수질오염총량관리 대상물질 확대를 위한 한강수계 하천수질 경향 및 수질특성 분석)

  • Choi, Ok Youn;Kim, Hong Tae;Seo, Hee Seung;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.15-33
    • /
    • 2017
  • Based on the existing pollutant emissin standards which are armed at the pollutant concentration of each pollution source, government formulated and implemented new management system of total water pollutant emission. By virtue of this new management system, pollution loading amount of individual watershed could be controlled, which achieved the requirement of water quality management such as TP and BOD. In initiate stage of it's implement, BOD was selected as object of water quality management, While it's necessary to consider the continuity of water quality data and established pollutant management laws and policy. During the ongoing management, TP management was added into the system while simply BOD management was not enough. However, the frequency of algae bloom in Han-river showed a trend of same, even though TP was treated as additional control target. Therefore, this paper will analyze different water quality parameters and characteristic of water quality, so that this study can be provide as reference for watershed management of water quality, by which the applicable management period and target pollutant can be selected in the future.

Stochastic Programming Model for River Water Quality Management (추계학적 계획모형을 이용한 하천수질관리)

  • Cho, Jae Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.231-243
    • /
    • 1994
  • A stochastic programming model for river water quality management was developed. River water quality, river flow, quality and flowrate of the wastewater treatment plant inflow were treated as random variables in the model. Withdrawal for water supply and submerged weir reaeration were included in the model itself. A probabilistic model was formulated to compute the expectation and variance of water quality using Streeter-Phelps equation. Chance constraints of the optimization problem were converted to deterministic equivalents by chance constrained method. Objective function was total annual treatment cost of all wastewater treatment plants in the region. Construction cost function and O & M cost function were derived in the form of nonlinear equations that are functions of treatment efficiency and capacity of treatment plant. The optimization problem was solved by nonlinear programming. This model was applied to the lower Han River. The results show that the reliability to meet the DO standards of the year 1996 is about 50% when the treatment level of four wastewater treatment plants in Seoul is secondary treatment, and BOD load from the tributary inflows is the same as present time. And when BOD load from Tanchon, Jungrangchon, and Anyangchon is decreased to 50%, the reliability to meet the DO standards of the year 1996 is above 60%. This results indicated that for the sake of the water quality conservation of the lower Han River, water quality of the tributaries must be improved, and at least secondary level of treatment is required in the wastewater treatment plants.

  • PDF