• 제목/요약/키워드: Water Quality Forecasting

Search Result 84, Processing Time 0.026 seconds

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

The generation of cloud drift winds and inter comparison with radiosonde data

  • Lee, Yong-Seob;Chung, Hyo-Sang;Ahn, Myeung-Hwan;Park, Eun-Jung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.135-139
    • /
    • 1999
  • Wind velocity is one of the primary variables for describing atmospheric state from GMS-5. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP(Numerical Weather Prediction) models. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images. Multi spectral imagery from GMS-5 was used for this purpose and applied to Korean region with together BoM(Bureau of Meteorology). The derivation of wind velocity estimates from low and high resolution visible, split window infrared, and water vapor images, resulted in improvements in the amount and quality of wind data available for forecasting.

  • PDF

Coordinated Operation of Weirs and Reservoirs of Nakdong River Basin considering River Water Quality (수량과 수질을 고려한 낙동강 수계 댐-보 연계운영)

  • Kim, Sheung-Kown
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.206-212
    • /
    • 2012
  • 2012년 상반기를 기점으로 '4대강 살리기 사업' 1 단계가 완료 되었다. 추후 안동댐과 임하댐의 연결 사업과 낙동강 상류 내성천의 영주 댐과 금호강 상류에 보현 댐 건설이 예정 되어 있지만, 낙동강 수계에는 8개 보 건설이 완료되어 하천의 물리적 환경이 바뀌었다. 따라서 앞으로는 보의 유지 및 운영 관리(주로 수질관리, 어도관리, 토사퇴적 및 세굴관리)가 중요하게 될 것이므로 기존의 상류 댐 운영 목표와 방식도 변해야 한다. 낙동강 수계는 11월부터 다음해 6월 까지가 갈수기에 해당한다. 따라서 갈수기에 수질을 담보할 유량이 실제로 흐를 수 있는지를 낙동강 유역 총체적인 관점에서 분석을 하고, 방류계획을 세울 필요가 있다. 수량이 수질을 항상 보장해 주지는 못하지만, 용수공급 목표를 저해할 환경과 생태계를 위한 무리한 초과 방류를 해야만 할 경우가 발생한다면, 그로 인한 기존의 농업, 공업 및 생활용수 공급에 미칠 영향을 가늠해서 대책을 세워야 한다. 본 연구에서는 좀 더 정교한 수질사고 시뮬레이션 모형, Water Pollution Accident Response Management System (WARMS)과, 하천수질예측시스템(Water Quality Forecasting System)모형 등, 수질을 고려한 3차원 모형과의 연동 및 연계를 염두에 두고, 시스템적 측면에서 수질과 수량을 한꺼번에 고려함으로써 궁극적으로 시간과 비용을 절약한다는 점에서 효율이 높을 것으로 생각되는 댐-보 연계운영을 위한 분석 방법을 제안한다.

  • PDF

Analysis of effects of drought on water quality using HSPF and QUAL-MEV (HSPF 및 QUAL-MEV를 이용한 가뭄이 수질에 미치는 영향 분석)

  • Lee, Sangung;Jo, Bugeon;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Drought, which has been increasing in frequency and magnitude due to recent abnormal weather events, poses severe challenges in various sectors. To address this issue, it is important to develop technologies for drought monitoring, forecasting, and response in order to implement effective measures and safeguard the ecological health of aquatic systems during water scarcity caused by drought. This study aimed to predict water quality fluctuations during drought periods by integrating the watershed model HSPF and the water quality model QUAL-MEV. The researchers examined the SPI and RCP 4.5 scenarios, and analyzed water quality changes based on flow rates by simulating them using the HSPF and QUAL-MEV models. The study found a strong correlation between water flow and water quality during the low flow. However, the relationship between precipitation and water quality was deemed insignificant. Moreover, the flow rate and SPI6 exhibited different trends. It was observed that the relationship with the mid- to long-term drought index was not significant when predicting changes in water quality influenced by drought. Therefore, to accurately assess the impact of drought on water quality, it is necessary to employ a short-term drought index and develop an evaluation method that considers fluctuations in flow.

Study on Development of Artificial Neural Network Forecasting Model Using Runoff, Water Quality Data (유출량 및 수질자료를 이용한 인공신경망 예측모형 개발에 관한 연구)

  • Oh, Chang-Ryeol;Jin, Young-Hoon;Kim, Dong-Ryeol;Park, Sung-Chun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1035-1044
    • /
    • 2008
  • It is critical to study on data charateristics analysis and prediction for the flood disaster prevention and water quality monitoring because discharge and TOC data in a river channel are strongly nonlinear. Therefore, in the present study, prediction models for discharge, TOC, and TOC load data were developed using approximation component in the last level and detail components segregated by wavelet transform. The results show that the developed model overcame the persistence phenomenon which could be seen from previous models and improved the prediciton accuracy comparing with the previous models. It might be expected that the results from the present study can mitigate flood disaster damage and construct active alternatives to various water quality problems in the future.

A Development of System for Water Quality Forecasting at Dalchun using Neural Network (신경망을 이용한 달천의 수질예측 시스템 개발)

  • Jun, Kye-Won;Lee, Won-Ho;Kim, Jin-Geuk;Ahn, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.478-482
    • /
    • 2006
  • 하천에서의 수질예측은 하천 환경의 관리 및 운영 측면에서 매우 중요하다. 그러나 현재의 수질에 관련된 물관리 운영 체제는 물관련 기관을 대상으로 산재되어 있는 물 정보를 정리하여 D/B로 활용하는 수준에 머무르고 있어 실질적인 정보의 활용과 해석 및 실시간적인 예측기능을 수행할 수 있는 예측시스템의 개발이 요구된다. 따라서 본 연구에서는 수질예측을 위한 시스템의 개발을 위해 신경망 기법을 활용하여 한강유역의 지류인 달천지점의 수질을 예측할 수 있는 지능형 모형을 구축하고 그 적용성을 검증하였다. 개발된 수질예측 시스템은 수자원의 효과적인 활용 및 하천의 중 장기 수질보존 대책 수립에 활용될 수 있을 것으로 기대된다.

  • PDF

Forecasting of the water quality in Youngsan river using by GA and T-S Fuzzy system (GA와 T-S 퍼지시스템에 의한 영산강 수질 예측)

  • Park, Sung Chun;Oh, Chang Ryol;Kim, San Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1381-1384
    • /
    • 2004
  • 대상 지점의 수질 예측은 단순한 모델로 설명하는데 쉽지 않을 뿐만 아니라 많은 오차를 내포하고 있다. 그러나 최근, 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘과 같은 인공지능이 대두되면서 복잡한 비선형 과정들을 나타낼 수 있게 되었다. 나아가 진정한 인공 지능을 실현하기 위해서는 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘을 보다 효과적으로 이용하고 통합해야 가능할 것으로 기대된다. 본 연구에서는 유전자 알고리즘(Genetic Algorithm)을 T-S 퍼지시스템(Takagj-Sugeno Fuzzy system)의 삼각형 멤버쉽 함수 형태와 규칙 베이스를 최적화하기 위한 도구로 사용하였으면, 예측은 T-S 퍼지 시스템을 이용하여 실시하였다. 대상지점은 영산강 유역의 나주지점을 선정하여 유량자료 및 수질자료를 이용하여 GA와 T-S 퍼지 시스템의 결합에 의해 수질 예측을 실시할 결과 돌연변이율$(P_m)$ $0.05\~0.1$에서 우수한 결과를 얻을 수 있었다.

  • PDF

The Study on Development of System for Web-Based Water Quality Forecasting (Web기반 수질예측 시스템 개발에 관한 연구)

  • Ahn, Sang Jin;Jun, Kye Won;Ryu, Byong Ro;Han, Yang Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1408-1412
    • /
    • 2004
  • 인구의 폭발적 증가, 산업화, 도시화의 급진적, 과학기숙의 발달 등으로 물 소비는 급증하는 반면, 이상기후현상으로 수자원의 절대량이 줄어 수자원의 양적인 문제와 하천 및 저수지의 수질오염에 대한 질적인 문제가 ,대두되고 있다. 하천의 수질현상 및 이송은 상당히 비선형적이고, 시간에 따라 변화하려, 실제로 수질의 예측은 유량의 변동, 오염물질의 이송 및 확산, 하천 구조물 등의 여러 요인에 의하여 상당히 어렵다고 알려져 왔다. 또한 한정된 수자원으로 하천의 수량과 수질목표를 동시에 달성하기 위해서는 물의 수요와 공급을 실시간으로 감시하면서 기상과 유출예측기술을 활용하여 용수의 수요와 공급을 예측하고 이를 토대로 수량과 수질을 고려한 물관리 운영시스템이 구축되어야 한다. 이를 위해 본 연구에서는 모형의 입${\cdot}$출력 구성을 자유롭게 변형할 수 있는 상태공간 모형과 신경망 모형을 이용하여 금강수계 주요 지점의 수질예측 모형을 구성하고 모형의 적용성을 파악한 후 예측력이 우수한 모형을 Web기반 모형의 수질예측 모듈의 기본모형으로 선정하고 Web 상에서 수질예측이 가능하도록 시스템을 개발하였다.

  • PDF

Forecasting of changes in the water quality in Sapgyo-Lake in accordance with implementation of Total Water Pollutant Load Management System (수질오염총량관리제 시행에 따른 삽교호의 수질변화 예측)

  • Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu;Kim, Changgi;Choi, Jeongho
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.209-223
    • /
    • 2019
  • Broadly speaking, in order to analyze the water quality improvement effects of the implementation of the Total Water Pollutant Management System in the Sapgy-Lake waterways, a reference was made to the [Plans for implementation of the Total Maximum Daily Load(TMDL)] in 3 cities (Cheonan, Asan, Dangjin). The results of the investigation into the plans to reduce the pollutant load show in that region show that there are plans to reduce pollution for a total of 16 reduction facilities. As for the result of the computation of the reduction in the load, these measurements were computed at the Gokgyo-stream basin and Namwon-stream basin, with BOD and T-P at the Gokgyo-stream basin reduced by 13.9 % and 13.3 %, respectively, while BOD and T-P at the Namwon-stream were reduced by 3.7 % and 3.3 %, respectively. In this way, thus using the results of the water quality forecast of Sapgyo-Lake in measures for the improvement of water quality (in accordance with the implementation of the TMDL), and using the QUAL-MEV model and EFDC model, it is noted that BOD will be improved by 26.4 % from 6.1 mg/L to 4.5 mg/L 0.0 %, T-P by 36.7 % from 0.168 mg/L to 0.107 mg/L and TOC by 26.4 % from 7.7 mg/L to 5.6 mg/L. However, it is forecasted that the targeted standards for the medium influence area will not be achieved. Evidently, Gokgyo-stream and Namwon-stream have been implementing the Total Water Pollutant Management System for the BOD items since January 1, 2019, but the Sapgyo-stream and Muhan-stream were excluded from being designated as subject regions. As such, it is noted now that it is necessary to implement the TMDL for the entire Sapgyo-Lake water systems including Sapgyo-stream and Muhan-stream in order to improve the water quality of Sapgyo-Lake, and likewise the T-P should be designated as the substance subjected to management in addition to BOD.

Preliminary Uncertainty Analysis to Build a Data-Driven Prediction Model for Water Quality in Paldang Dam (팔당댐 유역의 데이터 기반 수질 예측 모형 구성을 위한 사전 불확실성 분석)

  • Lee, Eun Jeong;Keum, Ho Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2022
  • For water quality management, it is necessary to continuously improve the forecasting by analyzing the past water quality, and a Data-driven model is emerging as an alternative. Because the Data-driven model is built based on a wide range of data, it is essential to apply the correlation analysis method for the combination of input variables to obtain more reliable results. In this study, the Gamma Test was applied as a preceding step to build a faster and more accurate data-driven water quality prediction model. First, a physical-based model (HSPF, EFDC) was operated to produce daily water quality reflecting the complexity of the watershed according to various hydrological conditions for Paldang Dam. The Gamma Test was performed on the water quality at the water quality prediction site (Paldangdam2) and major rivers flowing into the Paldang Dam, and the method of selecting the optimal input data combination was presented through the analysis results (Gamma, Gradient, Standar Error, V-Ratio). As a result of the study, the selection criteria for a more efficient combination of input data that can save time by omitting trial and error when building a data-driven model are presented.