• Title/Summary/Keyword: Water Purifiers

Search Result 25, Processing Time 0.022 seconds

Evaluation of Microbiological Contamination of Water Purifiers at Two Universities in Chungcheong Region

  • Jin Young Yun
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.256-262
    • /
    • 2023
  • The purpose of this study is to investigate microbial contamination in water purifiers from two universities (A and B) in Chungcheong region and to evaluate about the harmfulness of the isolated bacteria to the human. The degree of microbiological contamination of six water purifiers at university A was investigated three times from July 2018 to September 2019, and nine water purifiers at university B were investigated in 2023. The isolated bacteria were biochemically identified using an API kit and Vitek-2 system, and then the bacteria were identified to the species level using MALDI-TOF MS. In addition, the possibility of human infection of the isolated bacteria was evaluated through a literature search. In July 2018 and September 2019, the number of bacteria isolated inside the faucet was below the acceptable standard for hot water, but exceed for cold water in all water purifiers. In January and September 2019, bacteria exceeding the acceptable standards were isolated nine times from the cold water of six water purifies (a total of 12 water purifiers). Bacteria identified by MALDI-TOF MS included anaerobic bacteria (Clostridium novyi, Clostridium themopalmarium etc.), Gram-positive bacilli (Microbacterium testaceum, Arthrobacter woluwensis etc.), and Gramnegative bacilli (Acinetobacter nosocomialis, Comamonas kerstersii etc.), which are difficult identify by biochemical methods. In conclusion, bacteria exceeding the acceptable standard were isolated from the cold water of most of the water purifiers. Most of the isolated bacteria were low-pathogenic bacteria from natural environment, but opportunistic bacteria that can cause infection in humans were also isolated from some water purifiers.

Performance Evaluation of R435A on Refrigeration System of Water Purifiers (R435A를 적용한 정수기 냉동시스템의 성능평가)

  • Lee, Yo-Han;Kang, Dong-Gyu;Choi, Hyun-Joo;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Performance of R430A on Refrigeration System of Domestic Water Purifiers (대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Kim, Kyoung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Understanding on TDS Creep Phenomena of Reverse Osmosis Membranes in Water Purifiers (역삼투막 정수기에서 발생하는 총용존고형물 크리프 현상의 이해)

  • Kang, Sanghyeon;Yun, Sunghan
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Water purifiers have a quite different characteristic in comparison with general membrane water treatment processes in which the running and resting are repeated dozens of times a day. In the case of water purifiers using reverse osmosis membranes, this characteristic makes a phenomenon that the total dissolved solids (TDS) of permeate in water purifiers at the beginning of running shows a higher value than a normal value (TDS reduction is lower than a normal value). It is called "TDS creep". The effects of resting times and feed concentrations on the TDS creep were investigated. The feed flushing, the volume increase in permeate side and the flushing with purified water were applied to reduce TDS creep and the effectiveness were observed. Among these trials, the minimization of concentration between feed and permeate side of reverse osmosis membrane like the flushing with purified water can be an ultimate solution to reduce the TDS creep.

Prevalence of Microbiological Contamination on Water Purifiers at Lunchroom in Child Care Center (어린이집 급식실 정수기의 미생물학적 오염 평가)

  • Yoon, Mi-Hye;Kim, Jung-Beom;Oh, Hyuk-Soo
    • Korean journal of food and cookery science
    • /
    • v.28 no.5
    • /
    • pp.599-604
    • /
    • 2012
  • In this study, the prevalence of microbiological hazard on water purifiers at lunchroom in child care center was investigated. A total of 49 water purifiers and their purified cold water were sampled to test about the total aerobic bacteria, coliform bacteria, Bacillus cereus, Staphylococcus aureus, and Salmonella spp. Total aerobic bacteria was detected over 2.0 log CFU/mL in 6 out of 49 purified cold water (12.2%), ranged from 2.0 to 2.4 log CFU/mL, and the average number of total aerobic bacteria was showed to be 3.3 log CFU/drain spout. The drain spout turned out to be a major contaminant in water purifier and needs to be improved. Coliform bacteria were also detected in 7 out of 49 cold faucets (14.3%) and 7 out of 49 drain spouts (14.3%), but not detected in purified cold water. All samples were not contaminated with the pathogens tested in this study, except for B. cereus, which was contaminated on 2 out of 49 cold faucets (4.1%) and 4 out of 49 drain spouts (8.2%). All of B. cereus isolates produced enterotoxin, such as heamolysin BL enterotoxin (HBL) or non-heamolytic enterotoxin (NHE). The HBL was detected in 5 out of 6 B. cereus isolates (83.3%), including B. cereus PCF-11 and B. cereus PDS-30 isolate only produced NHE (16.7%). These results showed that the sanitary conditions of cold faucets and drain spouts should be improved promptly.

Microbiological Water Quality of Water Purifiers at Elementary Schools in Gunsan Area (군산지역 초등학교 정수기 물의 미생물학적 수질)

  • Seo, Lan-Ju;Park, Suhk-Hwan;Lee, Geon-Hyoung
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.74-81
    • /
    • 2009
  • In this research, we investigated the actual conditions of water purification systems at ten elementary schools located in Gunsan, Korea from July to December, 2007. The results were as follows; The population densities of heterotrophic bacteria in water purifiers ranged from 0 to $1.2{\pm}0.2{\times}10^4$ CFU/ml and those of tap water were in the range from 0 to $1.9{\pm}0.3{\times}10^4$ CFU/ml during investigation periods. Ninety percentage of purified water samples in July and September, 87.2% in October and November, and 93.7% in December turned out not to be suitable for drinking. The seasonal variation of the population densities of heterotrophic bacteria from purified waters was not notable. The total coliform, Salmonella and Shigella were not detected in purified water and tap water during investigation periods. Forty-five species of bacteria were isolated from water purifiers. The identified bacterial genera were Sphingomonas, Methylobacterium, Caulobacter, Novosphingobium, Bosea, Brevundimonas, Aminobacter, Ralstonia, Mitsuaria, Variovorax, Acidovorax, Massilia, Pseudomonas, Acinetobacter, Aeromonas, Bacillus, Staphylococcus, Brevibacillus, Microbacterium, Lapillicoccus, Micrococcus, Arthrobacter, Janibacter, Flavobacterium, Chryseobacterium, and Hymenobacter: Among the isolates, opportunistic pathogens such as Pseudomonas fluorescens, Staphylococcus epidermidis, Flavobacterium johnsoniae, and Acinetobacter johnsonii were also found.

A Study on Current Status and Trends of Recycling Used Water Purifier Filters (가정용 정수기 폐필터 재활용 동향에 관한 연구)

  • Shin, Yu Jeong;Kim, Young In;Kim, Jung Gun;Yeom, Seong Il;Lee, Do Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.398-404
    • /
    • 2021
  • The use of water purifiers has been increasing every year due to increased drinking water safety concerns raised by the water pollution accidents occasionally reported. Currently, more than 10 million water purifiers have been distributed in Korea, and the estimation of the purifier sales reaches two million units per year. As a result, the number of used water purifier filters that must be replaced on a regular basis has gradually increased. However, regardless of the considerations for the capacity of used filters remaining, water purifier filters were replaced and collected at regular intervals. The high cost of disposal of the used filters by landfill or incineration were required. Thus, in this study, the current status and trends of recycling technologies for used water purifier filters were reviewed. It is noted that there was insufficient statistical data to understand the current status of the difference between the number of used water filters discarded and the number of those recycled. Most studies on the recycling of old water purifier filters have concentrated on pretreatment and cleaning methods for sediment filters and membrane filters, with the goal of extending the lifespan of used filters. Further, the study suggested future study directions on the recycling of used water purifier filters, which could be useful information on establishing environmental policy to promote the recycling of used filters.

Study on Dangerous Factors and Damage Pattern Analysis of Leaking Water from Water Purifiers (누수가 발생한 정수기의 위험요소 발굴 및 소손패턴 해석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • The purpose of this paper is to find dangerous factors of a water purifier when water leaks due to inappropriate use and analyze the patterns of damaged parts in order to provide data for the examination of the cause of the problem. If the water purifier is inspected and managed by a non-specialist, when the FLC(Float Level Controller) at the top is inclined, water leakage may occur to the water purifier. The leaked water flows onto the cables and hoses and enters the thermostat terminal, heater, PCB, power supply connection connector, etc., becoming a dangerous factor that may cause a system failure, fire, etc. Due to the water that entered the input terminal, low noise and white smoke were generated at first. However, the flame gradually propagated due to the continuous inflow of moisture. It was found that when moisture reached the PCB, a carbonized conductive path was formed at the varistor terminal, input terminal, semiconductor device terminal, etc., and the flame became larger, which might result in a fire. From the metal microscope analysis of a damaged condenser terminal, it was found that the amorphous structure unique to copper cable disappeared, and voids, boundary surface and disorderly fine particles occurred. Also, in the case of the connector into which moisture penetrated, fusion and deformation occurred at the cable connection clips. The result of analysis of the power supply cable connector using a thermal image camera showed that most of the heat was generated from the cable connection clips and the temperature at the connection center was normal.

Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology

  • Park, Joon-Hong;Kim, Jin-Ho;Cho, Woo-Seok;Han, Kyu-Sung;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.114-120
    • /
    • 2017
  • In underdeveloped countries, many people suffer from water shortage due to the absence of water supply service. Although water purifiers have provided support in such situations, it is not easy to maintain water filters without a continuous supply of consumable filters. To obtain a sustainable drinking water source, appropriate technology of water treatment is necessary. Herein, a low cost water purification system was developed using natural raw materials. A non-electric water treatment system was developed using filtration through an Onggi filter, which is a type of Korean traditional earthenware with a microporous surface. The porosity and flux of the prepared Onggi filter were 29.06% and 31.63 LMH, respectively. After purification of water with total dissolved solids of 10.4 mg/L and turbidity of 100 NTU, the total dissolved solids and turbidity of the water treated using the Onggi filter decreased by 12% and 99.8%, respectively.