• Title/Summary/Keyword: Water Plan

Search Result 1,683, Processing Time 0.03 seconds

A Study on the Application of AI-Based Composite Sensor in WTP (수도사업장에서의 AI 기반 복합센서 적용 방안 연구)

  • Hong, Sung-taek;An, Sang-byung;Kim, Kuk-il;Cho, Hyun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.41-42
    • /
    • 2021
  • The Green New Deal policy was established to innovate the government's energy consumption structure, establish a third basic energy plan to strengthen the global competitiveness of the energy industry, and realize a carbon neutral society due to the increased need for transition to a low-carbon economy. Waterworks such as drinking water, water purification plant, and pressurization plant analyze control factors and energy consumption status by process to improve energy management efficiency and reduce energy usage through the 4th industrial revolution. Ultimately, we want to realize net-zero water purification plant.

  • PDF

Optimal Replacement Scheduling of Water Pipelines

  • Ghobadi, Fatemeh;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.145-145
    • /
    • 2021
  • Water distribution networks (WDNs) are designed to satisfy water requirement of an urban community. One of the central issues in human history is providing sufficient quality and quantity of water through WDNs. A WDN consists of a great number of pipelines with different ages, lengths, materials, and sizes in varying degrees of deterioration. The available annual budget for rehabilitation of these infrastructures only covers part of the network; thus it is important to manage the limited budget in the most cost-effective manner. In this study, a novel pipe replacement scheduling approach is proposed in order to smooth the annual investment time series based on a life cycle cost assessment. The proposed approach is applied to a real WDN currently operating in South Korea. The proposed scheduling plan considers both the annual budget limitation and the optimum investment on pipes' useful life. A non-dominated sorting genetic algorithm is used to solve a multi-objective optimization problem. Three decision-making objectives, including the minimum imposed LCC of the network, the minimum standard deviation of annual cost, and the minimum average age of the network, are considered to find optimal pipe replacement planning over long-term time period. The results indicate that the proposed scheduling structure provides efficient and cost-effective rehabilitation management of water network with consistent annual budget.

  • PDF

The Management Plan for the Ecological Waterfront Space of Muan Changpo Lake (무안 창포호의 자연생태친수공간 조성을 위한 관리방안 기초 연구)

  • Seo, Jung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2019
  • Changpo Lake was created as a part of a land reclamation for refugee self-helping projects. It shows characteristics of a fresh water lake, and still retains the early appearance of reclamation that surrounding regions have not been developed into farm lands. Shallow wetland has formed around the lake, which provides great conditions for diverse lives, and surrounding earthiness is favorable for growth of vegetation and restoration of the ecosystem. However, as facilities of the Muan International Airport nearby Changpo Lake are expanding and barns are being constructed, artificialness is gradually increasing. Particularly, since pollution sources such as sport facilities, farm lands and barns are scattered around Changpo Lake, pollutants are flowing in constantly. Accordingly, the results for setting up management areas according to the spatial characteristics and creating natural ecological spaces near Changpo Lake, Taebongcheon stream and Hakgyecheon stream are as follows. First, the creation of a natural eco-friendly waterfront space should be promoted by securing the health of the aquatic ecosystem and restoring species and the ecosystem. In addition, a consultative body needs to be formed to lead local residents to participating in river investigation and monitoring, maintenance, and management through role sharing. Second, the basic direction of the spatial management plan is to keep the unique charm of Changpo Lake, maintain harmony with nature, create diverse waterfront areas, and secure the continuity of Changpo Lake and inflow streams. Moreover, the area should be divided into three zones such as a conservation zone, a restoration zone and a waterfront zone, and for each zone, the preservation of vegetation, the creation of ecological wetlands and restoration of the ecotone and ecological nature need to be promoted. Third, facilities and activity programs for each space of Changpo Lake should be operated for efficient management of protected areas. In order to suit the status of each space, biological habitats, water purification spaces, experiential and learning spaces, and convenience and rest spaces should be organized and designated as research, monitoring, education, and tourism areas. Accordingly, points of interest should be set up within the corresponding area. In this study, there are many parts that need to be supplemented for immediate implementation since the detailed plans and project costs for the promotion of programs by area are not calculated. Therefore, it is necessary to make detailed project plans and consider related projects such as water quality, restoration of habitats, nature learning and observation, and experience of ecological environments based on the categories such as research, monitoring, education and tourism in the future.

A Guide for Environmental Impact Assessment for the Installation of Water-friendly Facilities in River Zones (하천구역 내 친수시설물 설치를 위한 환경영향평가 검토 가이드 연구)

  • Kyoung-Ho Kim;Junyeong An;Min-Kyu Ji
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.227-234
    • /
    • 2023
  • Recently, local governments have recognized river zones as leisure spaces and local festival venues, and hence, the pressure for developing these zones has increased significantly. However, given the unique functionalities of river zones and the time and costs associated with maintaining facilities and restoring damaged areas, a development plan must be selected carefully. To preserve river zones and to facilitate nature-friendly space utilization, this study focused on improving environmental impact assessment (EIA), which is an institutional implementation procedure for project plans. This study prepared a draft guide for EIA by providing an overview of the research background and survey outcomes, including the status of laws and regulations on river zones, development plans, and opinions on EIA. The results showed that because strategic EIA of basic river plans is important for district designation of river zones and the scope and direction of space utilization, it is necessary to establish a more meticulous business plan before reviewing and evaluating the mini EIA linked to the future implementation of a plan to derive a reasonable assessment. Additionally, this study provides a draft guide for EIA to evaluate the suitability of water-friendly facility construction plans considering the location characteristics and to reflect the factors that can reduce the environmental impacts during the mini EIA stage. In the future, we expect that the results of this study will serve as a foundation for establishing instructions and guides for the development of nature-friendly and water-friendly facilities in river zones during the establishment of plans.

The developing optimum maintenance cost model for water pipe network by waterworks business characteristics (수도사업자의 경영환경을 고려한 상수도관망 적정 유지관리비 산정 모델 개발 연구)

  • Kim, Kibum;Kim, Changhwan;Shin, Hwisu;Seo, Jeewon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • For the asset management of a water pipe network, it would be necessary to understand the extent of the maintenance cost required for the water pipe network for the future. This study would develop a method to draw the optimum cost required for the maintenance of the water pipe network in waterworks facilities to maintain the aim revenue water ratio and to achieve the target revenue water ratio, considering the water service providers' waterworks condition and revenue water ratio comprehensively. This study conducted a survey with 96 water service providers as of the early 2015 and developed models to estimate the optimum maintenance cost of the water pipe network, considering the characteristics of the water service providers. Since the correlation coefficient of all the developed models was higher than 0.95, it turned out that it had significant reliability, which was statistically significant. As a result of applying the developed models to the actual water service providers, it was drawn that increasing revenue water ratio to more than a certain level can reduce the maintenance cost of the water pipe network by a great deal. In other words, it is judged that it would be the most efficient to secure the reliability of waterworks management by increasing the short-term revenue water ratio to more than a certain level and gradually increase the revenue water ratio from the long-term perspective. It is expected that the proposed methodology proposed in this study and the results of the study will be used as a basic research for planning the maintenance of water pipe network or establishing a plan for waterworks facilities asset management.

Development of a Bottom-up Agricultural Water Governance Model in Korea (한국형 상향식 농업용수 거버넌스 모형 개발)

  • Lee, Seul-Gi;Choi, Kyung-Sook
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.3
    • /
    • pp.49-59
    • /
    • 2022
  • Recently, Korea aimed to increase water use efficiency by implementing integrated management according to the water management unification policy. Considering the enormous use of water resources in the agricultural sector, it is necessary to efficiently conserve water in terms of demand management by intensifying the stakeholders' involvement and awareness campaigns. The existing agricultural water management system in Korea is based on a top-down approach by which the government agencies directly plan budgets and policies to be enforced on and implemented by farmers, with little to no involvement of farmers in the decision-making process. However, this process has hindered the desired water resources management and the water conservation goal at the field level. Moreover, the limited research on water governance operations focusing on agricultural water creates a knowledge gap, particularly in Korea. Thus, it is necessary to investigate water governance cases with successful implementations in agricultural and rural areas to identify the factors applicable to domestic governance in Korea. In addition, a more systematic governance model should be established by identifying the subjectivity of the stakeholders' involvement in agricultural water governance. Therefore, this study proposed a new bottom-up model for agricultural water governance, which aims to raise the problem of autonomous water governance while promoting stakeholders' voluntary participation in agricultural water management and reflecting farmers' involvement in the decision-making process. Moreover, if agricultural water governance is expanded nationwide by reflecting agricultural and water resource policies in the future, it is believed that positive effects can be achieved in increasing utilization efficiency and securing sustantiality through agricultural water saving.

A Study on the Selection of the Total Pollution Load Management at Tributaries by Evaluation of Water Quality Volatility: Case Study for Chungcheongnam-do (수질변동성 평가를 통한 지류총량제 도입 대상유역 선정에 관한 연구: 충청남도를 중심으로)

  • Jeongho Choi;Hongsu Kim;Byunguk Cho;Sanghyun Park;Mukyu Lee;Byeonggu Lee;Uram Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.377-389
    • /
    • 2023
  • Chungcheongnam-do has been measuring the flow rate and water quality of streams in the province once a month since 2011 in order to water environment policies. Based on the results, after evaluating the coefficient of variation and the tendency of the water quality trend by using the Mann-Kendall test and Sen's Slope for each stream, the streams subject to priority introduction of Total Pollution Load Management at Tributaries were selected through the Stream Grouping Method. The water quality trend analysis results for 125 streams using the Mann-Kendall test and Sen's Slope were evaluated as streams showing a tendency of deteriorating water quality Biochemical oxygen demand (BOD): 13 streams, Total Phosphorus (T-P): 16 streams). Streams with deteriorating water quality were classified into A-D groups using the Stream Grouping Method. Group A, which has a high flow rate and high water quality, is a stream that requires priority management, and was selected as a stream for introduction of Total Pollution Load Management at Tributaries. There are 7 streams that need to be introduced into the BOD category, and there are 7 streams that need to be introduced into the T-P category. In this study, based on flow and water quality monitoring data accumulated over a long period of time (2011-2022), statistical techniques are used to select watersheds in which water quality is deteriorating. Accordingly, it is expected that it will be useful in establishing a water quality improvement plan in the future.

An Analysis of Rainwater Overflow by Housing Development and Overflow Decrease Method - Focused on the 13, 14 Districts (Motjarigol) of the Eun-pyung New Town in Seoul - (단지 개발로 인한 우수 유출량 변화 예측 및 저감방안에 관한 연구 - 서울 은평뉴타운 13, 14단지(못자리골)를 중심으로 -)

  • Sung, Jong-Sang;Lee, Eun-Seok;Kim, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.116-128
    • /
    • 2006
  • This study focuses on hydrological changes caused by developments in the 13th, 14th (Motjarigol) district in Eun Pyoung New Town, Seoul on the basis of the Land Use Planning of development plan. Through analyses from the hydrological experiments about rainfall outflow using universal equation and amounts of infiltration through soils, the changes in amounts of overflows were estimated and the results were discussed from a urban ecological point of view. As a result, it has been predicted that the amount of rainfall outflow at post-development was dramatically increased, compared to pre-development. Installing of Derbris Dams and infiltration facilities were suggested as alternative plan to meditigate these changes. If we apply these alternatives, the rainfall outflow would be reduced up to 30% compared to the development plan without BMPs (Best Management Practice). In conclusion, it is proposed that once the ecological principles were considered during development planning process, we can minimize the adverse effects of developments to our environments.

The Health Analysis of Protected Tree 'Zelkova serrata' Using an Ultrasonic Tomograph (느티나무 보호수의 내부 단층 진단을 통한 건강 분석)

  • Kang, Banghun;Cho, Seung-Jin;Son, Jinkwan;Kim, Nam-Choon;Kim, Mi-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • This study was conducted to evaluate defects in Zelkova serrata trees using an ultrasonic tomograph (PICUS) and suggest a management plan to maintain it as a natural and cultural resource. In previous study, health information of 16 protected trees were obtained by surveying the following categories; tree appearance, crown, bark, root exposure, water and nutrition, deterioration, pest, vitality, ground status, and pollutant. The average score of health was 16.5 in 16 trees, which means that general monitor is needed for management. In this study, the evaluation result of tree's inside defects using an ultrasonic tomograph showed that 43.8% of decay rate has been found in 16 trees. In fact, some trees look to be good even though they actually have a defects causing broken by natural disaster such as strong wind. Therefore, it is urgent to put some support to the trees and come up with a protective plan. The results of this study would be useful as basic data in developing a guideline for the efficient conservation and management of big and old trees.

Numerical Simulation for River Safety of Saemangeum Basin according to Master Plan (새만금 종합개발계획에 따른 새만금 유역 치수 안전성 수치모의)

  • Jeong, Seok il;Yoo, Hyung Ju;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.127-133
    • /
    • 2018
  • The Saemangeum master plan includes dredging and waterproofing materials, construction projects that can change the hydraulic characteristics of the Saemangeum and Mangyeong and Dongjin River basins. In this study, the river safety of 2030 when the Saemangeum master plan was completed for 100 year frequency, 500 year frequency and 100 year frequency applied RCP 8.5 scenario was examined using Delft3D. As a result of the analysis, it was confirmed that there was no overflowing point at the 100 year frequency, but the difference between the flood level and the river bank elevation was relatively small at the curved and river joint part. At the 100-year frequency with the 500-year frequency and the RCP 8.5 scenario, the possibility of overflowing at several locations was confirmed. The possibility of river bed loss due to fast velocity appears in the upstream part of Mankyung River and it is necessary to monitor the safety of hydraulic structures continuously. In addition, it is expected that the expansion of the area showing the characteristics of the lake due to dredging will affect the sediment mechanism and water quality, so detailed and diverse studies will be needed.