• 제목/요약/키워드: Water Level Prediction

검색결과 349건 처리시간 0.029초

포탄 사격장 토양의 RDX에 의한 인근 하천 오염 예측 (Prediction of Surface Water Contamination with RDX Transported from Soil in a Neighboring Firing Range)

  • 박정태;이동수
    • 한국군사과학기술학회지
    • /
    • 제22권6호
    • /
    • pp.832-840
    • /
    • 2019
  • Recently, pollution from gunpowder due to shell shootings at military drilling sites has raised various environmental concerns. The purpose of this study is to predict the contamination level of RDX in the soil area of the firing range zone near Anwol river watershed, the study site, and the intake area, Anwol river and Imjin river, as a function of time and space. In this study, a multimedia model was developed to predict the variation of RDX contamination by rainfall. The range of the medium was limited to soil, water, and sediment, and excluded the atmosphere, taking into account the physical and chemical properties of RDX with low vapor pressure and low Henry's constant. The pollutant levels of the waters of compartments, including the last section of the Imjin River affecting the water intake, was compared with the environmental standard for RDX.

시공간적 강우특성이 반영된 ESN 알고리즘을 활용한 하수관로 수위 변화 예측 (Prediction of Changes in Water Level in Sewage Pipes Using ESN Algorithm Reflecting Spatial Rainfall Characteristics)

  • 이소현;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.460-460
    • /
    • 2023
  • 최근 범 지구적인 기후변화로 인해 집중호우가 빈번히 발생하고 침수피해가 증가하고 있다. 이에 따른 침수 피해 위험이 큰 지하상가, 지하 주차장, 반지하 주택 등의 침수 발생이 잦아지며 인명 및 재산 피해 발생이 커지고 있다. 이러한 지역은 인근 하수관로의 수위에 따라 침수 영향을 크게 받게 된다. 이에 따른 강우·유출 관계는 침수피해에 대해 대처하기 위해 시공간적 강우 특성이 반영된 하수관로 수위 예측이 중요하다고 판단된다. 이에 본 연구에서 수위 자료는 서울시 하수관로 수위 현황 자료를 활용하였으며, 강수량 자료는 서울 내 서초구 일대의 강수량 자료를 활용하여 연구를 진행하였다. 대상 지역은 저지대에 위치해 침수가 잦은 서초구 서초동으로 선정하였으며, 분석에 사용된 기간은 2012년부터 2021년까지의 수위 자료를 화용하여 이를 바탕으로 순환 신경망인 RNN의 일종이며, 다른 모델의 구조와 비교하여 더욱 간단하고 효율적인 ESN(Echo State Network) 알고리즘을 사용하여 수위 예측을 진행하였다. 분석을 위해 대상 지역의 강수 사상이 발생하여 하수관로의 수위의 변동이 큰 기간을 선정하여 분석을 실시하였다. 2012년부터 2018년까지의 자료를 학습(training) 자료로 활용하였으며, 모형의 검증 위해 통계분석을 실시하여 검증하였다.

  • PDF

기계학습을 활용한 하수관로 수위 예측 (Prediction of water level in sewer pipes using machine learning)

  • 임희성;안현욱;이효진;송인혁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.93-93
    • /
    • 2023
  • 최근 범지구적인 기후변화로 인해 도시유역의 홍수 발생 빈도가 빈번하게 발생하고 있다. 이로 인해 불투수성이 큰 도시지역의 침수 등의 자연재해 증가로 인명 및 재산피해가 발생하고 있다. 이에 따라 하수도의 제 기능을 수행하고 있다면 문제가 없지만 이상기후로 인한 기록적인 폭우에 의해 침수가 발생하고 있다. 홍수 및 집중호우와 같은 극치사상의 발생빈도가 증가됨에 따라 강우 사상의 변동에 따른 하수관로의 수위를 예측하고 침수에 대해 대처하기 위해 과거 수위에 따른 수위 예측은 중요할 것으로 판단된다. 본 연구에서는 수위 예측 연구에 많이 활용되고 있는 시계열 학습에 탁월한 LSTM 알고리즘을 활용한 하수관로 수위 예측을 진행하였다. 데이터의 학습과 검증을 수행하기 위해 실제 하수관로 수위 데이터를 수집하여 연구를 수행하였으며, 대상자료는 서울특별시 강동구에 위치한 하수관로 수위 자료를 활용하였다. 하수관로 수위 예측에는 딥러닝 알고리즘 RNN-LSTM 알고리즘을 활용하였으며, RNN-LSTM 알고리즘은 하천의 수위 예측에 우수한 성능을 보여준 바 있다. 1분 뒤 하수관로 수위 예측보다 5분, 10분 뒤 또는 1시간 3시간 등 다양한 분석을 실시하였다. 데이터 분석을 위해 하수관로 수위값 변동이 심한 1주일을 선정하여 분석을 실시하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였으며, 하수관로 수위 고유번호 25-0001을 대상으로 예측을 하였다. 학습에는 2012년 ~ 2018년의 하수관로 수위 자료를 활용하였으며, 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

  • PDF

신월 빗물저류배수시설 운영을 위한 딥러닝 기반 관거 수위 예측 (Deep learning-based conduit water level prediction for Shinwol underground stomwater tunnel operation)

  • 최현석;윤선권
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.418-418
    • /
    • 2021
  • 신월 빗물저류배수시설은 2010년 집중호우로 침수피해가 발생한 강서구 및 양천구의 저지대 침수문제 해결을 위해서 양천구의 지하 50m 깊이에 설치한 직경 10m, 길이 3.6km, 저류량 32만톤 규모의 지하 대심도 저류 터널이다. 해당 시설은 강우 발생시 유역의 중상류 하수관에서 횡월류 수문을 통해 우수를 저류터널로 유입 및 저류하고, 하류에 위치한 목동 빗물펌프장과 연계하여 배수할 수 있도록 구성되어 있다. 현재 시설의 운영은 유입부 인근에 설치된 수위계를 통해 수문 가동 여부를 판단하고 있으며, 운영 기준 및 매뉴얼은 서울기술연구원에서 지속적인 모니터링을 통해 고도화하고 있다. 본 연구의 목적은 실측 수위 기반의 신월 빗물저류배수시설 운영을 자동화하기 위한 방편으로, 딥러닝 기반의 RNN, LSTM, GRU 등의 알고리즘을 이용하여 유입부 관거 수위를 예측하는 모델을 개발하는 것을 목표로 하였다. 모델의 개발 및 검·보정을 위해 2010년부터 유역 내 구축되어 있는 강우 및 하수관 수위 자료와 목동 빗물펌프장 운영자료를 활용하였다. 현재 신월 빗물저류배수시설은 2020년 5월 준공되어 절대적인 자료 축적 기간이 부족하기 때문에, 향후 지속적인 강우-수위 모니터링을 통해 모델을 고도화하여 시설의 운영에 활용할 수 있도록 개선해 나갈 예정이다.

  • PDF

독립적 하천홍수경보를 위한 인공지능기반 하천수위예측모형 개발 (Development of River Water Level Prediction Model Based on Artificial Intelligence for Independent Flood Alert)

  • 김수영;김형준;김보람;윤광석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.328-328
    • /
    • 2021
  • 최근 전 지구적인 기후변화의 영향은 강우량의 집중을 야기하며 홍수피해의 규모를 증가시키는 영향을 끼친다. 특히, 아세안 국가들은 해수면 상승, 태풍 및 집중호우에 의한 침수피해 빈발로 최소 2,000만명이 영향을 받고 있다. 국내의 홍수예보모형을 수출하여 아세안 국가에 구축하고 있으나 통신 시설이 불안정하여 중앙제어 방식의 기존의 홍수예보시스템만으로는 긴급상황에 대한 대처가 부족할 수 있다. 따라서 본 연구에서는 하나의 관측소에서 수위, 강우의 관측과 홍수예측, 경보까지 한번에 가능한 관측소를 개발하기 위해 관측된 수위와 강우자료를 활용하여 인공지능기반의 하천수위예측 모형을 개발하였다. 목표 리드타임은 30분에서 6시간으로 설정하였으며 모형은 Tensorflow로 구축하였다. 시계열 자료의 예측에 적합한 LSTM 기법을 적용하였다. 연구의 대상지역은 건설연의 계측시험유역인 설마천유역으로 하였으며 학습에는 2009년부터 2020년까지의 10분 단위 수위 및 강우량자료를 활용하였다. 연구결과 설마천 유역은 규모가 작고 도달시간이 짧아 1시간 후 예측까지는 높은 정확도를 나타냈으나 3시간 이상의 예측결과는 다소 낮게 평가되었다. 다만, 비상상황에서 통신이 두절된 상황에서 위급하게 대피를 위해 홍수경보를 발령하는데는 활용이 가능 할 것으로 판단된다.

  • PDF

딥러닝기법 이용한 하천수위 예측시 학습자료 구축에 대한 연구 (A study on the construction of learning data when predicting river water level using deep learning)

  • 육지문;김장경;박찬호;김태정;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.357-357
    • /
    • 2022
  • 도심지 하천의 수위예측을 위해서는 일반적으로 수리-수문모형을 기반으로한 홍수위 모형을 사용하고 있다. 하지만 이러한 모형들은 매개변수 추정방법 및 모형구축을 행한 사용자의 숙련도에 따라 불확실성이 매우 크다 이러한 문제점을 개선하기 위해 데이터 기반의 딥러닝기법을 이용한 하천수위 예측이 많이 연구되고 있으나 수문기상자료와 같이 이전 시간 값과의 상관성이 큰 자료를 활용하면서 발생하는 자기 예측(self Prediction) 현상이 발생한다. 또한 도심지 하천의 데이터 품질관리의 문제로 입력자료 구축에 어려움이 있다. 본 연구는 중랑천 유역을 중심으로 2015년 ~ 2020년 사이의 강우 및 수위자료를 이용하여 학습을 진행하였으며 하천의 수위 예측을 수행함에 있어 학습입력자료 구축시 강우사상의 구분 방법에 따른 예측결과 비교 및 지연시간 및 Embedding Dimension을 이용한 전처리를 통해 자기 예측 현상을 비교해 보았다. 본 연구를 통해 도심지 하천 수위예측의 학습입력자료 구성을 위한 방안을 제시하였다.

  • PDF

산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구 (A study of applying soil moisture for improving false alarm rates in monitoring landslides)

  • 오승철;정재환;최민하;윤홍식
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1205-1214
    • /
    • 2021
  • 강수는 공극수압의 상승에 관여해 토양 강도 및 응력의 변동을 발생시켜 산사태의 주요 원인 인자 중 하나로 지목된다. 따라서 강수는 산사태 발생 임계값 산정에 빈번히 사용되나, 지반 안정성을 직접적으로 산정하고 예측하기에는 무리가 있어 오탐지 사건에 대한 분석에는 한계가 있다. 한편 토양수분은 공극수압의 변동에 보다 직접적인 연관성을 지니므로, 다수의 연구에서 지반 안정성의 정량적인 평가에 활용된 바 있다. 이에 본 연구에서는 산사태 발생에 대한 임계값 산정에 있어 토양수분 인자 활용의 적정성을 평가하고자 하였다. 먼저 두 수문 인자의 거동 분석을 통해 강수에 대한 토양 포화도의 반응성을 파악하고, 선행 강수지수(Antecedent Precipitation Index)를 활용해 산사태 발생 임계값을 산정하였다. 이후 토양 포화도를 활용하여 산사태 발생 임계값을 산정했으며, 분할표를 활용해 두 임계값을 정성적으로 평가하였다. 그 결과, 일 강수량(Pdaily)을 단일 인자로 사용해 결정된 산사태 발생 임계값 대비 괴산읍에서는 각각 75% (API), 42% (SM)의 향상을 보였고 창수면에서는 각각 33% (API), 44% (SM)의 향상을 보였다. 따라서 토양수분과 선행 강수지수 모두 임계성공지수(Critical Success Index)를 효과적으로 향상시켰으며 오탐지율을 감소시켰다. 추후 토양 포화도를 통해 산사태 발생에 요구되는 강우 강도를 산정하는 연구와 토양 포화도 수준에 따른 강우 저항성을 산정하는 연구 등 토양수분 자료를 다각적으로 접목한 연구가 수행된다면 산사태 예측 정확성을 향상시키는 데 기여할 수 있을 것으로 보인다.

Level I Fugacity Model을 이용한 Biopile 내 유기화합물 5종의 분포 예측 (Prediction of Distribution for Five Organic Contaminants in Biopiles by Level I Fugacity Model)

  • 김계훈;김호진
    • 한국토양비료학회지
    • /
    • 제41권3호
    • /
    • pp.228-234
    • /
    • 2008
  • 본 연구는 level I fugacity model을 이용하여 유류오염 토양에서 많이 존재하며 생태적 위해성이 큰 다섯가지 유기성오염물질 (anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene, phenanthrene) 이 기상, 액상, 고상 및 비수용성액체(NAPL)의 네 가지 상(phase)으로 구성된 biopile 내에서 어떻게 분포 하는가를 예측하기 위하여 수행하였다. 이를 위하여 영국 내에서 장기간 유류로 오염된 세 지역으로부터 토양 시료를 채취, 분석하였고 토양 분석 결과와 관련 인자를 level I fugacity model에 입력하여 fugacity 및 오염물질의 토양 중 분포를 구하였다. 다섯 오염물질의 fugacity 간에는 큰 차이가 있었으나 동일 오염물 질은 시료 간 fugacity에서 별다른 차이를 보이지 않았다. 모든 오염물질은 NAPL과 고상에 주로 존재하였으며 토양시료간의 유기탄소함량 차이가 오염물질 의 분배 동태에 큰 영향을 미쳤다. benzene은 기상과 액상에 높은 농도로 존재함으로써 위해성에 근거한 기상과 액상 중 benzene 관리의 중요성을 나타내었다. 반면 다른 오염물질은 기상과 액상에 거의 존재하지않음을 보임으로써 지하수 오염 가능성을 현저하게 감소시켰다. 본 연구의 결과는 위해성이 큰 오염물질과 복원 처리를 토양 내 오염물질 잔류 농도 간에 관련이있음을 보였으며 또한 유류오염 토양의 위해성 평가과정에서 NAPL과 고상을 고려하는 일의 중요성도 나타내었다.

조위 및 조류 예측 정확도의 개선 방법 (A Method for Improvement of Tide and Tidal Current Prediction Accuracy)

  • 정태성
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권4호
    • /
    • pp.234-240
    • /
    • 2010
  • 연안개발로 인해 발생하는 해양환경 변화를 정확히 예측하여 해양환경을 효율적으로 관리하기 위해서는 정확한 조위 및 조류 분포에 관한 자료의 확보가 필수적이다. 그러나 현재 대부분의 환경영향평가에서는 조석 수치모의에서 제한된 조석분조 만을 사용하여 조위와 조류분포를 예측하여 많은 분조의 합성에 의해 발생되는 실제 조석현상을 정확하게 계산하지 못하고 있으며, 이로 인해 환경영향평가에 오류가 발생하고 있다. 본 연구에서는 제한된 분조의외해 개방경계에서 조화상수를 가지고도 연안에서 관측된 조위자료를 활용하여 실시간으로 정확하게 조위 및 조류 분포를 예측할 수 있는 방법을 제안하였다. 4개 분조에 의한 조위와 38개 분조에 의한 조차의 비 그리고 모의조차와 관측조차의 비를 가지고 보정한 조위 예측결과는 관측조위와 잘 일치하였다.

급배수관망 누수예측을 위한 확률신경망 (Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network)

  • 하성룡;류연희;박상영
    • 상하수도학회지
    • /
    • 제20권6호
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.