• Title/Summary/Keyword: Water Leakage Method

Search Result 269, Processing Time 0.025 seconds

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Bonding Property of Silicon Wafer Pairs with Annealing Method (열처리 방법에 따른 실리콘 기판쌍의 접합 특성)

  • 민홍석;이상현;송오성;주영창
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2003
  • We prepared silicon on insulator(SOI) wafer pairs of Si/1800${\AA}$ -SiO$_2$ ∥ 1800${\AA}$ -SiO$_2$/Si using water direct bonding method. Wafer pairs bonded at room-temperature were annealed by a normal furnace system or a fast linear annealing(FLA) equipment, and the micro-structure of bonding interfaces for each annealing method was investigated. Upper wafer of bonded pairs was polished to be 50 $\mu\textrm{m}$ by chemical mechanical polishing(CMP) process to confirm the real application. Defects and bonding area of bonded water pairs were observed by optical images. Electrical and mechanical properties were characterized by measuring leakage current for sweeping to 120 V, and by observing the change of wafer curvature with annealing process, respectively. FLA process was superior to normal furnace process in aspects of bonding area, I-V property, and stress generation.

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

Fabrication and Permeability of Stainless Steel Filter by using Filler Metal (Filler metal을 이용한 Stainless steel필터의 제조 및 통기도)

  • 배승열;안인섭;성택경;최주호
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

A Study on the Characteristics of ELB Insulating Material deteriorated by Salt water (염수에 의해 열화된 누전차단기 절연재료의 특성에 관한 연구)

  • Kim, Hyung-Rae;Kim, Dong-Ook;Kim, Hyeog-Soo;Choi, Chung-Seog;Kim, Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.878-881
    • /
    • 2001
  • In this paper, we analyzed the characteristics of insulating material with ELB(earth leakage circuit breaker) through tracking experiment and the study was carried out three different types of samples. The tracking is breakdown phenomenon of material surface that is generated on the organic insulating material. The test method applied IEC publication 587. The result of the sample breakdown by tracking was carbonized and resistance of between the electrodes is approximately 300$\Omega$. In the result of DSC analysis, the caloric peak was detected before 100$^{\circ}C$ in product of tracking. It appeared weight loss of 10.87% at 537$^{\circ}C$ on TGA. IR spectrum analysis showed carbon-hydrogen(C-H)bond on molecular structure that is the sample of tracking.

  • PDF

Characterization of Sterically Stabilized Liposomes and Their Stability in Rat Plasma in Vitro (입체구조적으로 안정화된 리포좀의 특성 및 혈장내 안정성)

  • 이지혜
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.251-256
    • /
    • 2000
  • Sterically stabilized liposomes (SSL) composed of distearoylphosphatidylcholine, cholesterol, dicetylphosphate and distearoylphosphatiodylethanolamine-N-poly(ethyleneglycol) 2000 (DSPE-PEG 2000) were made by reverse phase evaporation method to prolong biological half-life and decrease toxic side effect of drug. Streptozocin (572), a water-soluble antitumor agent with short half-life, was selected as a model drug. The size of SSL was controlled by polycarbonate extrusion to 100 nm which is adequate size for long circulation in plasma. The release rate of drugs from SSL in PBS was evaluated. And the stability of STZ-containing liposomes against drug leakage into rat plasma was evaluated in order to investigate the interaction of liposome and plasma protein. Incorporation of DSPE-PEG 2000 into conventional liposomes significantly decreased the drug leakage into rat plasma.

  • PDF