• 제목/요약/키워드: Water Flows

검색결과 1,350건 처리시간 0.031초

Current Issues, Trends and Possibilities in Water Sector in Nepal

  • Shrestha, Hari Krishna
    • 물과 미래
    • /
    • 제52권8호
    • /
    • pp.56-66
    • /
    • 2019
  • Nepal is bestowed with abundant water. With more than 1500 mm average annual rainfall in the country, a vast quantity of underutilized groundwater in the Terai belt, and the water stored in snowcaps in the Himalayas, aquifers in the mountains and glacial lakes, Nepal is potentially in an advantageous position in terms of per capita availability. However, low emphasis in management aspect of water and high emphasis in infrastructural developments related to water resources management has resulted in conversion of water in Nepal from a resource to a burden. The global climate change, reduction in number of rainy days, increase in intensity of rainfall during wet monsoon season, encroachment of river banks for settlement, inadequate release of environmental flows from hydropower plants, and attempt to tame the mighty and high velocity rivers of Nepal have resulted in increasing number of water induced disasters (flood and landslide), rise in conflict between local residents and hydropower developers, higher number of devastating landslides, and in some extreme cases mass migration of residents resulting in climate refugees. There is a ray of hope; the awareness level of the people regarding sustainable use of water resources is increasing, the benefit sharing mechanism is gradually being implemented, the role of interdisciplinary and integrated water resources management is appreciated at a higher level and the level of preparedness against flood and landslides is at a higher degree compared to a couple of decades ago. With the use of renewable energy sources, the possibilities for sustainable and productive use of water are on the rise in Nepal.

플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의 (MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN)

  • 이진희;김길호;심명필
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF

SWMM의 수정유역폭식 개발 (Development of Adjusted Subcatchment Width Equation in SWMM)

  • 배덕효;장민석
    • 한국수자원학회논문집
    • /
    • 제42권2호
    • /
    • pp.105-115
    • /
    • 2009
  • 본 연구에서는 Storm Water Management Model(SWMM)의 기존 유역폭식의 문제점을 도출하고, 새로운 유역폭식을 개발하여 그 적합성을 가상유역 및 실제유역에 적용하여 분석 제시하였다. 기존 유역폭식의 문제점을 도출하기 위해 유역폭의 이론적 거동특성을 규명하고, 이를 간략화된 가상유역에 적용하여 분석하였다. 본 연구에서 제시한 수정유역폭식은 소유역의 지표면 흐름뿐 아니라 관의 흐름을 고려한 것으로 가상유역에 적용한 결과 기존 유역폭식의 문제점을 개선할 수 있는 것으로 나타났다. 또한, 실제유역에서 개발된 수정유역폭식의 적합성을 검증하기 위해 96.3 ha에 해당하는 군자배수구역 시범지역으로 선정하여 강우사상에 따른 유출량 자료를 실측하였다. 실측된 강우-유출사상에 대해 수정유역폭식을 적용한 결과, 기존 유역폭식보다 보다 정확히 유출을 모의할 수 있는 것으로 나타났다.

대경사를 지나는 천수 흐름에서 수정된 정수압의 효과 (Effect of Corrected Hydrostatic Pressure in Shallow-Water Flow over Large Slope)

  • 황승용
    • 한국수자원학회논문집
    • /
    • 제47권12호
    • /
    • pp.1177-1185
    • /
    • 2014
  • 대경사 수로의 부등류에 대해 적용될 수 있도록 수정된, 새로운 정수압 분포를 제시하였다. 이것을 천수방정식에 적용하여 대경사를 지나는 천수 흐름을 정확하게 해석할 수 있는 유한체적 모형을 개발하였다. 포물선형 융기의 배수에 대해 압력 수정이 고려된 모형에서 바닥 경사 생성항의 영향이 줄어들어 융기의 하류에서 도수의 진행 속도가 크게 감소되었다. 삼각형 턱을 지나는 댐 붕괴 흐름에 대한 모의에서 압력 수정항이 추가된 모형으로 디지털 영상분석에 의한 수면을 압력 수정이 고려되지 않은 경우에 비해 더 잘 포착할 수 있음을 확인하였다. 압력 수정항 덕분에, 턱에 반사되는 흐름은 줄어들고 월류는 늘어 모의 결과가 실험 결과에 잘 부합된다. 따라서 댐의 여수로나 해안의 처오름 등 실용적인 문제에 대한 이 모형의 적용성이 기대된다.

비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법 (A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선 (IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

X-ray PIV 기법의 개발과 적용연구 (Development of X-ray PIV Technique and Its Applications)

  • 이상준;김국배;김석;김양민
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.20-25
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed fur measuring quantitative information on flows inside opaque conduits and/or opaque-fluid flows. To check the performance of the x-ray PIV technique developed, it was applied to a liquid flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, the refraction-based edge enhancement mechanism was employed with seeding detectable tracer particles. The amassed velocity field data obtained were in a reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to get velocity fields of blood flow and to measure size and velocity of micro-bubbles simultaneously, and to visualize the water refilling process in bamboo leaves. The x-ray PIV was found to be a powerful transmission-type flow imaging technique fur measuring quantitative information of flows inside opaque objects and various opaque-fluid flows.

  • PDF

영일만내의 유동과 수질특성에 관한 연구 (Study on Current and Water Quality Characteristics in Yongil Bay)

  • 김헌덕;김종인;류청로
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.28-37
    • /
    • 2001
  • The water quality in Yongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex. The study aims to simulate the current system that is necessary to build ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D model baroclinic model which considers tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most applicable on appearing the current system of the stratificated Yongil Bay difference of density. Form the results of simulation considered tidal current only, it can be clarified that the water body flows in the inner bay through the bottom layer and flows out the outer bay through the surface layer in Yongil Bay. And the fresh water from the Hyongsan river and the thermal discharge form POSCO have a little effect on the current system in Yongil Bay, but the diffusion of heat and salt has an important effect upon the formation of the density stratification of the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system in Yongil Bay.

  • PDF

1차원 비정상상태 하천수질모의를 위한 KORIV1-WIN 개발 (Development of One-Dimensional Unsteady Water Quality Model for River)

  • 정세웅;고익환;김남일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.563-567
    • /
    • 2004
  • During drought season, the self-purification capacities of the four major rivers in Korea are significantly controlled by environmental maintenance flows supplied from the mid- or upstream large dams. Therefore, it is obviously important to operate the dams considering not only water quantity aspects but also conservation of downstream water quality and aquatic ecosystems. Mathematical water quality models can be efficiently used to serve as a decision support tool for evaluating the effects of operational alternatives of upstream dams on the downstream aquatic environment. In this study, an unsteady one-dimensional water quality model, KORIV1-WIN was developed based on the theoretical and numerical algorithms for hydrodynamics and water quality simulations of CE-QUAL-RIV1. It consists of hydrodynamic(KORIV1H) and water quality(KORIV1Q) modules, and pre- and post-processors for input data preparations and output displays. The model can be used to predict one-dimensional hydraulic and water quality variations in rivers with highly unsteady flows such as dam outflow change, rainfall-runoff, and chemical spill events.

  • PDF

Characterization of gas-water flow in tight sandstone based on authentic sandstone micro-model

  • Liu, Yuqiao;Lyu, Qiqi;Luo, Shunshe
    • Geosystem Engineering
    • /
    • 제21권6호
    • /
    • pp.318-325
    • /
    • 2018
  • Eight tight sandstone reservoir samples from $He_8$ and $Shan_1$ Formations of the Sulige Gas field were selected to perform gas-water micro-displacement experiment based on authentic sandstone micro-model. The gas pressure-relief experiment was proposed for the first time to simulate the pressure change and gas-water percolation characteristics in the process of gas exploitation. The experiment results show that: (1) In the process of gas accumulation, the gas preferentially flows into the well-connected pores and throats with large radius, but rarely flows into the area without pores and throats. (2) Under sufficient gas drive, the water in pores and throats usually exists in the forms of 'thin water film', 'thick water film', and 'water column', but under insufficient gas drive, gas fails to flow into new pathways in time, so that the reservoirs with large pores and throats are high in water cut. (3) Under the same water saturation, the reservoirs with better petrophysical properties has higher gas recovery factor within unit time. Under the same petrophysical conditions, the reservoirs with lower water saturation show higher gas recovery factor within unit time. The higher the permeability, the stronger the liquid carrying capacity of reservoirs.