• Title/Summary/Keyword: Water Droplets

Search Result 414, Processing Time 0.026 seconds

사이드 채널형 재생블로워의 내부 유동 가시화 (Visualization of Flow inside the Side Channel Type Regenerative Blower)

  • 양현모;이경용;최영석;정경석
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

Vaned Wheel Atomizer에 의한 CWM 미립화 (Vaned Wheel Atomization of CWM)

  • 김성준;김용선
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.974-982
    • /
    • 1992
  • 본 연구에서는 Wheel 미립화기로 CWM을 분사시켰을때 Vane의 형태가 혼합연료 방울의 크기분포에 미치는 영향을 실험적으로 연구하는 것이며 그 연구 내용을 요약하 면 다음과 같다. .Vane의 형상계수(Aspect ratio)가 연료방울의 크기분포에 미치는 영향 .Vane의 각도가 연료방울의 크기분포에 미치는 영향 .미분탄 부하도와 연료방울의 SMD변화 .미분탄 분포의 평균크기변경에 따른 연료방울의 SMD변화 위에서 형상계수라함은 Vane의 출구직경(d)와 Vane의 출구길이 (L)의 비(L/d)를 의미 하고 있다.

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

2단 실린더형 싸이클론의 물 및 오일 액적 제거 성능 분석 연구 (Evaluation of removal performance of a novel two-stage cylinder type cyclone against water and oil droplets)

  • 김수민;김학준;김명준;한방우;우창규;김용진
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.119-125
    • /
    • 2017
  • A novel two stage cylindrical cyclone was developed for a 3 phase separator in shale oil production industry. The cyclone performance was compared with a cone type cyclone and multi cyclone at the same experimental condition using water and oil mists generated by a humidifier and atomizer at the flow rate 1 to $2m^3/min$. The removal efficiency of total suspended water droplets by the novel cyclone, calculated using inlet and outlet concentrations measured by an optical particle counter, was 99% which is higher than 90% of oil droplet removal efficiency at $2m^3/min$. It might be due to the evaporation of small water droplets during the tests. The water and oil droplet removal performance of the novel cyclone based on the quality factor which is a function of pressure drop and removal efficiency was the highest among three cyclones. The results indicate that the cyclone could be an economical device to remove water and oil mists from shale gas generation processes where a huge three phase separator is commonly used.

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

희석 방법에 따른 나노에멀젼 형성 연구 (Study of Nano-emulsion Formation by Different Dilution Method)

  • 조완구;한상길
    • 대한화장품학회지
    • /
    • 제38권3호
    • /
    • pp.201-207
    • /
    • 2012
  • Oil-in-ethanol (O/E) 마이크로에멀젼을 물에 희석하여 얻은 O/W 나노에멀젼의 성질에 대하여 다른 희석 과정의 영향을 연구하였다. 물/에탄올/비이온성계면활성제/실리콘 오일 계를 모델 계로 선택하였다. 희석과정은 물(또는 마이크로에멀젼)을 마이크로에멀젼(또는 물)에 단계별로 첨가하는 방법으로 구성되었다. O/E 마이크로에멀젼을 물에 첨가하여 혼합하면 30 nm 정도의 입경을 가진 나노에멀젼을 얻을 수 있었다. 반면에 물을 O/E 마이크로에멀젼에 첨가하면 400 nm의 입경을 가진 에멀젼을 얻을 수 있다. 희석 방법이 얻어지는 에멀젼의 성질에 중요한 역할을 하였다. 시간에 따른 나노에멀젼의 입자 변화는 관찰되지 않았으나 입자가 큰 에멀젼은 시간에 따라 입경이 증가하였으며 불안정화 기작은 오스트왈드 라이퍼닝으로 추정되었다.

화제 억제제가 첨가된 수용액 액적의 증발냉각 현상 (Evaporation Cooling Phenomena of Droplets Containing Fire Suppression Agents)

  • 유갑종;방창훈;김현우
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.895-903
    • /
    • 2001
  • Evaporation cooling phenomena of droplets containing fire suppression agents on a hot metal surface were experimentally investigated. Solution of water containing potassium acetate (30-50% by weight) and sodium bromide (10-30% by weight) were used in the experiments, and surface temperatures were ranged from 70-116$^{\circ}C$. The evaporation time of the droplet on the heated surface was determined by using frame-by-frame analysis of the video records. It is found that the apparent evaporation time is shorter in turns of pure water, sodium bromide solution and potassium acetate solution. However, the time averaged heat flux is higher in turns of pure water, sodium bromide solution and potassium acetate solution. In-depth temperature variation of the hot metal does not occur significantly by the kinds of additive.

  • PDF

분자운동력학법에 의한 분자괴의 표면현상 (Surface Phenomena of Molecular Clusters by Molecular Dynamics Method)

  • Maruyama, Shigeo;Matsumoto, Sohei;Ogita, Akihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.11-18
    • /
    • 1996
  • Liquid droplets of water and argon surrounded by their vapor have been simulated by the milecular dynamics method. To explore the surface phenomena of clusters, each molecule is classified into 'liquid', 'surface', or 'vapor' with respect to the number of neighbor molecules. The contribution of a 'surface' molecule of the water cluster to the far infrared spectrum is almist the same as that of the 'liquid' molecule. Hence, the liquid-vapor interface is viewed as geometrically and temporally varying boundary of 'liquid' molecules with only a single layer of 'surface' molecules that might have different characteristics from the 'liquid' molecules. The time scale of the 'phase change' of each molecule is estimated for the argon cluster by observing the instantancous kinetic and potential energies of each molecule. To compare the feature of clusters with macroscopic droplets, the temperature dependence of the surface tension of the argon cluster is estimated.

  • PDF

사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작 (Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold)

  • 김진영;성중우;조성진;김철홍;임근배
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

고분자전해질형 단위 연료전지의 주요 작동 조건이 공기극 플러딩 현상에 미치는 영향 (Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell)

  • 민경덕;김한상
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.489-495
    • /
    • 2006
  • Proton exchange membrane (PEM) should be sufficiently hydrated with a careful consideration of heat and water management. Water management has been a critical operation issue for better understanding the operation and optimizing the performance of a PEM fuel cell. The flooding on cathode side resulting from excess water can limit the fuel cell performance. In this study, the visual cell was designed and fabricated fur the visualization of liquid water droplet dynamics related to cathode flooding in flow channels. The experiment was carried out to observe the formation, growth and removal of water droplets using CCD imaging system. Effects of operating conditions such as cell temperature, air flow rate and air relative humidity on cathode flooding characteristics were mainly investigated. Based on this study, we can get the basic insight into flooding phenomena and its two-phase flow nature. It is expected that data obtained can be effectively used fur the setup and validation of two-phase PEM fuel cell models considering cathode flooding.