• 제목/요약/키워드: Water Droplets

검색결과 416건 처리시간 0.023초

Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정 (Size measurement of electrosprayed droplets using shadowgraph visualization method)

  • 오민정;김성현;이명화
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.151-158
    • /
    • 2017
  • 실내 환경 및 산업체 배기가스중의 미세먼지를 제거하는 방법으로서 압력손실이 낮으면서도 집진효율이 높은 전기집진기가 널리 사용되어지고 있다. 그러나 전기집진기는 서브마이크로미터 크기의 먼지에 대한 제거효율이 낮기 때문에, 정전분무법으로 하전액적을 공급하여 먼지와의 충돌을 촉진시켜 하전효율을 높이는 방법이 대안으로 떠오르고 있다. 그러나 먼지의 하전효율은 정전분무된 액적의 크기 및 개수와 밀접한 관계가 있으나, 액적의 크기를 효과적으로 측정하는 방법이 확립되어 있지 않은 것이 현실이다. 본 연구에서는 손쉽게 이용할 수 있는 수돗물로 정전분무를 한 후, 분무된 액적을 다양한 방법으로 가시화하여 고속카메라로 촬영하였다. 그리고 Image J 프로그램으로 액적의 크기분포를 측정하여 가시화방법에 따른 액적의 크기를 상호 비교하였다. 결과적으로, 레이저로 가시화하여 고속카메라로 촬영하면 미세액적의 이미지화가 가능하기 때문에, 그 액적의 크기는 Xenon광으로 가시화하여 측정한 것보다 약 50 % 작음을 알 수 있었다. 또한 레이저로 가시화하여 측정한 액적의 크기가 $Fern{\acute{a}}ndez$ de la Mora and Loscertales (1994)의 예측치와 비교적 잘 일치함을 알 수 있었다.

교반조에서 비혼화성 액상(n-헥산/물)계의 액-액분산 (Liquid-Liquid Dispersion of an Immiscible Liquid Phase (n-Hexane/Water) System in a Stirred Tank)

  • 김태옥;김동욱;전종한
    • 공업화학
    • /
    • 제4권3호
    • /
    • pp.537-543
    • /
    • 1993
  • N-헥산과 증류수로 이루어진 비혼화성 액상계에서 교반에 의한 액-액분산을 해석하였다. 교반기는 blade형태가 flat, 60mesh와 40mesh의 금망, 그리고 60mesh금망의 외부에 금속띠를 두른 4가지의 6-bladed turbine 교반기를 사용하였다. 실험결과, 동일한 교반속도에서 유기상의 분산정도와 교반기의 소요동력은 blade형태가 flat>solid edged>60mesh>40mesh의 순서이었으며 유기상의 부피비가 증가할수록 완전분산에 필요한 최소교반속도가 증가되었다. 또한 분산상의 액적의 평균직경은 교반속도의 증가에 따라 감소하였으며 동일한 교반속도에서는 Solid edged$d_{32}$)은 다음과 같이 유기상의 부피비(${\phi}$)와 Weber number($N_{We}$)의 함수로 나타낼 수 있었다.$d_{32}/D=a(1+b{\phi})N_{We}{^{-0.6}}$.

  • PDF

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Pool 화재에서의 표면 냉각에 의한 소화 (Extingushiment by the Colling Effect of the Fuel Surface with Pool Fires)

  • 한용식;김명배;신현동
    • 한국화재소방학회논문지
    • /
    • 제11권4호
    • /
    • pp.15-23
    • /
    • 1997
  • A series of measurements and visualization to investigate the extingushiment of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperature, O2, CO2, and CO concentrations along the plume centerline are carried out to observe pool structures without water sprays. Visualization by the Ar-ion laser sheet flow pattern of droplets of the sprays above the pool fires. It is observed than in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a repid decrease do not continue till the extinction point.

  • PDF

분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire)

  • 김호영;오상엽;정진택
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire)

  • 오상엽;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

EXPERIMENTS ON THE INTERACTION OF WATER SPRAYS WITH POOL FIRES

  • Han, Yong-Shik;Kim, Myung-Bae;Shin, Hyun-Dong
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.518-525
    • /
    • 1997
  • A series of measurements and visualization to investigate the interaction of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperatures, $O_2$, $CO_2$, and CO concentrations along the plume centerline are carried out to observe pool fire structures without water sprays. Visualization by the Ar-ion laser sheet shows flow pattern of droplets of the sprays above the pool fires. It is observed that in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a rapid decrease do not continue till the extinction point.

  • PDF

Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening

  • Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.410-423
    • /
    • 2019
  • Fire suppression using a water mist nozzle directly above an n-Heptane pool in a fire compartment with a door opening was numerically investigated using the Fire Dynamics Simulator (FDS) for the purpose of application in nuclear power plants. Input parameters for the numerical simulation were determined by experimental measurements. Water mist was activated 10 s after the fire began. The sensitivity analysis was conducted for three input parameters: total number of cubic cells of 6032-2,926,400, droplets per second of 1000-500,000, and extinguishing coefficient of 0-100. In a new simple calibration method of this study, the extinguishing coefficient yielding the fire suppression time closest to that measured by experiments was found for use as the FDS simulation input value. When the water mist jet flow made contact with the developed fire, the heat release rate instantaneously increased, and then rapidly decreased. This phenomenon occurred with a displacement of the flame near the liquid fuel pool. Changing the configuration of the door opening with different aspect ratios and opening ratios had impact on the maximum value of the heat release rate due to the flame displacement.

태양열 기반 증기 유동을 이용한 미세먼지 제거 연구 (Solar-driven steam flow for effective removal of particulate matters (PM))

  • 김정주;김정재
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.130-135
    • /
    • 2021
  • Water vapor has received worldwide large attention due to its broad technological implications ranged from resource production and environmental remediation. Especially, one of the typical areas where the water vapor is important is the removal of PM (particulate matter) which causes a critical hazard to human health. However, most vapor-based PM removal methods are limited in removing PM2.5 by using relatively large water droplets and consume large energy. Here, we propose a superhydrophilic thermally-insulated macroporous membrane to generate steam flow. The water vapor directly captures PM with steam flow and hygroscopic characteristic of PM. The steam, the cluster of water vapor, from the membrane gives rise to high removal efficiencies compared to those of the control case without light illumination. To reveal PM removal mechanism, the steam flow and PM were quantitatively analyzed using PIV measurement. The proposed steam generator could be utilized as an economical and ecofriendly platform for effective PM removal at a fairly low cost in a sustainable, energy-free, and harmless-to-human manner.

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.