• Title/Summary/Keyword: Water Drop

Search Result 904, Processing Time 0.024 seconds

Experimental study of heat transfer and pressure drop characteristics for flow of water inside circular smooth and micro-fin tubes (평활관 및 미세휜관 내에서의 물을 이용한 열전달 및 압력강하 특성에 관한 실험)

  • Park, H.B.;You, S.M.;Youn, B.;Yoo, K.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.454-461
    • /
    • 1997
  • Heat transfer and pressure drop for single phase flow of water in circular smooth and micro-fin tubes are measured. Copper tubes of 9.52 and 7mm outer diameter were used. The internal roughness in micro-fin tubes was formed by spiral grooves having $25^{\circ}$ helx angle, 0. 12mm fin height and 0.454mm pitch in 9.52mm tubes; $18^{\circ}$ helix angle, 0.15mm fin height and 0.322mm pitch in 7mm tubes. The measured friction factor and heat transfer coefficient are compared with relevant previous works, and the correlations for micro-fin tube are developed.

  • PDF

An Experimental Study on the Performance of a Brazed Plate Heat Exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • 김종하;권오경;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study on the performance evaluation of a brazed plate heat exchanger with 10USRT of normal cooling capacity has been carried out. In the present study, a brazed plate heat exchanger was tested at a chevron angle $25^{\circ}$with refrigerant R-22. Refrigerant mass flux was ranged from 23 to 58 kg/$m^2$s in condensation, and from 22 to 53 kg/$m^2$s in evaporation. The heat transfer coefficients and pressure drops are increased as the mass flux increases. The water side pressure drop is increased as the cooling water flow rate and chilled water flow rate increase, while mass flux has little effect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges (대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구)

  • Kim, Kyong-Hwan;Lee, Dong Yeop;Hong, Sa Young;Kim, Young-Shik;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

INFLUENCE OF AERIAL FIRE FIGHTING ON INTENSITY OF RADIATION FROM FIRE

  • Iwata, Yusaku;Koseki, Hiroshi;Kon, Fumio
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.269-274
    • /
    • 1997
  • A large scale fire experiment was conducted through the collaboration between the Tokyo Fire Department and the National Research Institute of Fire and Disaster (NRIFD) for the purpose of studying the effectiveness of aerial fro fighting against urban fire. Ten model houses and ten collapsed model houses were arranged in an area of about $2,000\;m^2$. Water was dropped totally fourteen times by helicopters onto the model houses. In order to know influence of water drop, radiation was measured by four radiometers and four IR (Infrared) cameras, which were set around the burning area. In this report, the influence of aerial Ore fighting on fire was discussed in terms of irradiance and IR images. Data of irradiance, flame temperature and flame area showed that influence of each water drop continued only at most a minute.

  • PDF

AA-GWR Water Retention Meter를 이용한 부동화 농도 측정법

  • Choe, Chang-Hak;Joy, Margaret K.;Lee, Do-Ik
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.04a
    • /
    • pp.80-92
    • /
    • 2003
  • The water retention of coating colors can be accurately measured by devices such as an AA-GWR water retention meter whose principle of measurement is based on pressure filtration of coatings under an externally applied air pressure over a certain period of time. It was hypothesized that such devices could be also used to determine the immobilization solids(IMS) of coating colors by determining a sudden drop in the rate of dewatering, that is, a sudden change in the drainage curves. To test this hypothesis, the immobilization solids of coating colors containing various thickeners and water retention additives at different levels were first accurately measured by a modified immobilization tester based on the well-known gloss drop method, and then their values were compared with those obtained by an AA-GWR water retention tester. They agreed very well and showed that the mean of the solids differences is 0.36% in the IMS points between both methods. This good agreement was not surprising because both test methods are based on the same end-point, that is, the immobilization solids point at which menisci begin to form at the coating surface. Theoretical considerations supporting this new method for measuring the immobilization solids of coating colors are presented and some recommendations for the test method are discussed. Also, the effect of various thickeners and water retention additives on the properties and printability of coated papers is discussed.

  • PDF

A Numerical analysis on the pressure drop of the flow field past a two-staged orifice in a rectangular duct (사각덕트 내 이단 오리피스를 지나는 유동의 압력강하에 대한 수치해석)

  • Song, Woo-Yeol;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2747-2752
    • /
    • 2007
  • A numerical study has been performed on the flow past a two-staged orifice in a rectangular duct. The flow field including the recirculation region behind the orifice was investigated and the pressure drop was calculated. Water was used as a working fluid and the flow was treated as the turbulent flow, of which the Raynolds number was 6000. The main parameters for the pressure drop and the recirculation region were the orifice's inclined angle against the duct, the interval between two orifices, the shape of the orifice's hole having the same area, and the change of the hole position at the same interval. The variation of the flow field was investigated with each parameter. Consequently, it was found that the most dominant parameter influencing the drop of the pressure was the change of the hole position at the same interval between orifices. Especially when the interval between orifices was narrow and the relative position the holes was changed, its effect to the flow field was shown most drastically as a result of this study. The SIMPLER algorithm with FLUENT code was employed to analyze the flow field.

  • PDF

Effect of Interfacial Tensions on Pressure Drop of Two-Phase Plug Flow in Round Mini-channels -A Preliminary Investigation- (원형 미소 채널 내 계면장력이 Plug flow 압력강하에 미치는 영향에 관한 선행 연구)

  • Lee, Chi-Young;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1882-1887
    • /
    • 2007
  • In the present experimental study, the effect of interfacial tensions on pressure drop of air-water two-phase flow in round mini-channels was investigated. A glass (highly wettable) tube and a Teflon (poorly wettable) tube, both in 350 mm length but 1.8 mm and 1.59 mm in inner diameters each, were used for the tests. All the experiments were performed only in the plug flow regime, confirmed by visualization. In the glass tube, the gas plugs were surrounded by the liquid film along the inner periphery. On the other hand, the inner wall remained dry at the gas portion in the Teflon tube. The pressure drop of the plug flow in the Teflon tube without the liquid film) appeared much larger than in the glass tube (with the liquid film) due to dissipation of energy by movement of the wetting lines. In this paper, various correlations on the two-phase pressure drop of plug flows were compared and a modified correlation was proposed, taking account of the surface wettability.

  • PDF

Two-phase Pressure Drop in Horizontal Rectangular Channel (수평 사각 채널에서의 상 압력 강하)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.625-631
    • /
    • 2013
  • Two-phase pressure drop experiments were performed during flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were made in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. Among the separated flow models, the correlation model suggested by Lee and Garimella predicted the frictional pressure drop within MAE of 47.2%, which is better than other correlations.

Analysis on condensation heat transfer and pressure drop to develop design program for plate heat exchangers (판형열교환기 설계프로그램 개발을 위한 응축열전달 및 압력강하 분석)

  • Ko, Jea-Hyun;Song, Young-Ho;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The purpose of this study is to get the formulas of condensation heat transfer coefficient and pressure drop about the water to develop design program for plate type heat exchangers. The single phase flow of cold side was calculated with the correlation of Ko. Condensation heat transfer coefficient model proposed by Annaiev was used and Lockhart model was used to analyze the pressure drop. The calculation algorithm was proposed to calculate heat transfer rate and pressure drop simultaneously. The prediction errors remained within 20% compared to the commercial code in the working range of the plate heat exchangers.