• Title/Summary/Keyword: Water Chiller

Search Result 120, Processing Time 0.02 seconds

Cycle Simulation of an Adsorption Chiller Using Silica Gel-water (실리카겔-물계 흡착식 냉동기 사이클 시뮬레이션)

  • Kwon, Oh-Kyung;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.116-124
    • /
    • 2007
  • An adsorption chiller is expected to have high energy-efficiency in utilizing the waste heat exhausted from a process. The objective of this paper is to investigate the performance of silica gel-water adsorption chiller from the cycle simulation and to provide a guideline for design of the adsorption chiller. The effect of cycle time, inlet temperature and water flow rate on the cooling capacity and COP is quantified during the cycle operation. It is found that the performance of adsorption chiller is more sensitive to the change of inlet water temperature rather than the water flow rate. It is concluded that the COP is 0.57 in the standard conditions(hot water $80^{\circ}C$, cooling water $30^{\circ}C$, chilled water inlet temperatures $14^{\circ}C$ and cycle time 420sec).

Effect on Household Absorption Chiller by the Supply of the Cooling Water (냉각수 보급이 가정용 흡수식 냉난방기의 성능에 미치는 영향)

  • 이호생;김동휘;최병권;김재돌;윤정인
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.267-272
    • /
    • 2002
  • The electric heat pump requiring HCFCs as a refrigerant has been for most residential air-conditioners in Korea. They cause a surge up electric power demand during summer. Moreover, the use of HCFCs and HFCs causes a serious problem to the global environment such as global warming and ozone layer destruction. An absorption chiller and heater could solve such problems. It was built and tested for analyzing the performance of the absorption chiller/heater. Experiment was done with a 1.5RT household absorption chiller and heater. It was experimented that the cooling capacity, gas capacity, COP were researched by the temperature of cooling water. The change of the cooling water temperature have effect the temperature(or pressure) of the parts on absorption chiller The result of the change of the cooling water temperature have the effects of the absorption chillers. This data will help to operate the household absorption chiller and heater.

  • PDF

Optimal Control Algorithm for the Dual Source Chiller Air Conditioning System (복합 열원 공조시스템의 최적 제어 알고리즘)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.881-888
    • /
    • 2004
  • Control algorithms for a dual source chiller air conditioning system were developed. These are control algorithms for the supply air temperature control, the supply header chilled water temperature control, the chiller chilled water temperature control, and the cooling tower water temperature control. These algorithms were analyzed by using a dynamic simulation program. Simulation results showed the energy savings and the satisfactory controls of an absorption and centrifugal chiller air conditioning system. Therefore, control algorithms developed for this study may effectively be used for the improved controls of the dual source chiller air conditioning system.

A TEST VERIFIED MODEL DEVELOPMENT STUDY FOR A NUCLEAR WATER CHILLER USING THE SEISMIC QUALIFICATION ANALYSIS AND TEST

  • Sur, Uk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.355-360
    • /
    • 2011
  • This paper is a study on a nuclear water chiller. It presents a test-verified finite element model of a water chiller to be used at a Nuclear Power Plant. The test-verified model predicts natural frequencies within 5% for all major modes below 50 Hz. This model accurately represents the dynamic characteristics of the actual hardware and is qualified for its use in the final stress analysis for seismic verification.

Pulsed Electric Field Effects to Reduce the Level of Campylobacter spp. in Scalder and Chiller Water during Broiler Chicken Processing

  • Shin, Dae-Keun;Martin, Bradely C.;Sanchez-Plata, Marcos X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1314-1317
    • /
    • 2011
  • To evaluate the effects of pulsed electric field (PEF) application on scalder and chiller water on Campylobacter contamination, four different treatments under three different water conditions including hard scalder water ($55^{\circ}C$), soft scalder water ($45^{\circ}C$) and chiller water, were applied as follows: i) a control treatment with no salt and no electric treatment, ii) a PEF only treatment, iii) a PEF treatment with 0.5% salt water, and iv) a PEF treatment with 1% salt water treatment. The use of PEF in hard scalding water showed an effect of reducing Campylobacter when compared to the control during the 200 s timeframe. With the addition of salt, the intervention caused at least 5.81 log CFU/ml reduction of Campylobacter counts after 200 s of PEF exposure. Similar effects were observed under soft scalding conditions. Campylobacter reductions were evident under chilling conditions with up to 2.00 log for PEF only, 5.77 log for PEF+0.5% salt and 2.69 log for PEF+1% salt treatment in water. Therefore, the current PEF setting for the scalder and chiller water can be successfully used to reduce pathogenic loads of Campylobacter on broiler chicken carcasses, and further research may be necessary to apply it in the poultry processing industry.

Operating Number Control of Compressors Based on Cooperative Logic for a High Efficiency Centrifugal Water Chiller (터보냉동기의 고효율 운전을 위한 협조 방식 기반의 압축기 대수제어)

  • Jeong, Seok-Kwon;Lim, Seung-Kwan;Ryu, Keon-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.233-240
    • /
    • 2015
  • This paper discusses compressors operating number control strategy using cooperative logic to cope with variable partial load for high efficiency of a centrifugal water chiller. The cooperative logic is composed of a speed-up and speed-down controller, enabling smooth operation of compressors and equivalent distribution of thermal load in each compressor. This centrifugal water chiller design can be operated with high efficiency without incurring excessive energy waste and large transient phenomena at partial load states. Simulations in MATLAB and experiments in a real chiller system were conducted and verified the high efficiency control of a centrifugal water chiller achieved by the suggested strategy.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.36-41
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. FDD algorithm can detect refrigerant leak failure, when 20% amount of charged refrigerant for normal operation leaks from the water chiller. The refrigerant leak failure caused COP reduction by 6.7% compared with normal operation performance. When two kinds of faults, such as a decrease in the mass flow rate of cooling water and temperature sensor fault of cooling water inlet, are detected, COP is a little decreased by these faults.

  • PDF

In-Situ Diagnosis of Vapor-Compressed Chiller Performance for Energy Saving

  • Shin Younggy;Kim Youngil;Moon Guee-Won;Choi Seok-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1670-1681
    • /
    • 2005
  • In-situ diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the in-situ diagnosis is to predict the performance of a target chiller. Many models based on thermodynamics have been proposed for the purpose. However, they have to be modified from chiller to chiller and require profound knowledge of thermodynamics and heat transfer. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). The effect of sample data distribution on training the ANFIS is investigated. It is found that the data sampling over 10 days during summer results in a reliable ANFIS whose performance prediction error is within measurement errors. The reliable ANFIS makes it possible to prepare an energy audit and suggest an energy saving plan based on the diagnosed chilled water supply system.

The Suggestion of Reliability Improvement Method based on Failure Trend Analysis of Chiller (냉동기 고장경향분석을 통한 설비신뢰도향상 방안 제시)

  • Lee, Sang Dae;Yeom, Dong Un;Hyun, Jin Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.251-255
    • /
    • 2015
  • Chiller system plays an important role of maintaining room temperature constantly by supplying chilled water to Heating, Ventilating and Air Conditioning(HVAC)or area room cooler equipment during plant normal operation or accident condition. Chiller failures are one of the most frequently occurring equipment failures. If the types of chiller failures are analyzed and grouped thoroughly, it would be helpful to make chiller maintenance strategy at the plants. That would enhance equipment reliability of chiller in the end. In this paper, chiller failure data during three years were analyzed and categorized by specific failure code. In addition, the various proposals to improve equipment reliability of chiller were suggested such as Preventive Maintenance Optimization(PMO) strategy and performance monitoring reinforcement and so on.

Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller (흡수식 냉동시스템의 고장현상 분석과 진단)

  • Han, Dongwon;Chang, Young-Soo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.