• 제목/요약/키워드: Water Availability Index

검색결과 52건 처리시간 0.024초

산림기반 야생동식물보호구역 조경을 위한 기초연구 (A Preliminary Study on the Adjustment of Forest-based Wildlife Protection Area)

  • 장갑수
    • 한국조경학회지
    • /
    • 제36권1호
    • /
    • pp.62-69
    • /
    • 2008
  • This study was conducted in order to recommend forest-based wildlife protection areas in Chung-nam Province using several basic habitat conditions. The conditions used in this study were the forest patch size with the potential to keep wildlife animals safe, the distance from water sources, and the availability of food for wildlife. The fractal dimension index was also used to find the edge line dynamics, which can influence on habitat conditions for edge species. The natural conservation management indices including a forest map (indicating the level of forest age), a slope map, and an elevation map were used to find the forest patches with enough space for wildlife to live on. Water resources and their buffer areas were considered as factors to protect the space as an ecological corridor. Deciduous trees and trees mixed with deciduous trees and conifers were chosen to provide wildlife animals their food. In total, 525 forest patches were chosen and recommended for the wildlife protection area. Five of these forest patches were recommended as wildlife protection areas managed by the provincial government. The other 520 forest patches were recommended to protect local wildlife animals and be managed by each county or city. These forest patches were located around the Geum-buk and Geum-nam mountains, and the forest patches are important resources as habitats to keep wildlife in the area. An ecological network consists of these separate forest patches with the ecological integration. A fractal dimension index was used to divide forest patches into several categories in order to find how patches are shaped. The forest patches with longer edges or more irregular shapes have a much higher possibility of being inhabited by various types of edge species. Through comparison of the wildlife protection areas recommended in this study to the current wildlife protection areas, we recognized that the current wildlife protection areas need boundary adjustments in order for wildlife animals to survive by themselves with water sources and food.

대리변수를 이용한 한반도 수질 및 수생태계 부문의 기후변화 취약성 평가 (Vulnerability Assessment of Water Quality and Aquatic Ecosystem to Climate Change in Korea using Proxy Variables)

  • 이건행;정유진;김경현;유정아;이은정
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.444-452
    • /
    • 2012
  • This study aims at assessing vulnerability of water quality and aquatic ecosystem to climate change by using proxy variables. Vulnerability to climate change is defined as a function of exposure to climate, sensitivity, and adaptive capacity. Detailed proxy variables were selected considering availability and then standardized by re-scaling concept. After adequate weights were assigned to standardized proxy variables by Delphi technique, vulnerability index was calculated. As results, vulnerability of adjacent regions to coastal areas include water quality and aquatic ecosystem is relatively higher than that of inland areas, and especially adjacent region to the western and southeast seas, and Jeju show high vulnerabilities. Vulnerability in the future was performed based on A1B scenario (IPCC, 2000). Temporally, the increase of vulnerability from 2050s to 2100s may be larger than the increase from 2000s to 2050s. Because vulnerability index was estimated through the relationship among various proxy variables, it is important to consider characteristics of local region with measurements and policies for reduction of sensitivity and enhancement of adaptive capacity on climate change. This study is expected to be useful in planning adaptation measures and selecting priority to the policy on climate change.

2009년 태백 가뭄의 분석 (An Analysis of the Tea-bak Drought in 2009)

  • 안국현;김영오;이경택;송대현
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • 2008년 늦가을부터 2009년 봄까지 강원도 일부 지방에서 심각한 가뭄이 발생하여 태백지역에서는 87일 동안 제한급수가 실시되는 등 지역 주민들이 겪는 고통은 상당하였다. 2009년 태백시에서 발간한 가뭄백서에 따르면, 이번 가뭄으로 인한 태백지역의 피해 추정액은 980여억 원에 달한다고 한다. 본 연구에서는 가뭄지수들 중 토양수분지수(Soil Moisture Index)와 수자원가용지수(Water Availability Index)를 이용하여 태백지역에서 발생한 가뭄을 농업과 수문학적 관점으로 분류하여 정량화 하였다. 또한 태백지역의 물공급을 맡고 있는 광동댐의 운영을 분석함으로써 이번 가뭄의 발생 원인을 보다 심층적으로 분석하였다. 연구결과, 홍수기 동안 광동댐의 운영을 개선하여 9월초에 저수량을 충분히 확보하는 것이 태백지역 가뭄 해소의 관건임을 확인하였다.

  • PDF

Global warming and biodiversity model projections

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook
    • Journal of Ecology and Environment
    • /
    • 제35권3호
    • /
    • pp.157-166
    • /
    • 2012
  • Many models intending to explain the latitudinal gradient of increasing species diversity from the poles to the equator are presented, which are a formalisation of the species-energy hypothesis. The model predictions are consistent with patterns of increasing species number with increasing mean air or water temperatures for plants and animals. An increase in species richness is also correlated with net primary production or the Normalised Difference Vegetation Index. This implies that increased availability of resources favours increased diversity capacity. The explanatory variables included in the biodiversity prediction models represent measures of water, energy, water-energy, habitat, history/evolution and biological responses. Water variables tend to be the best predictors when the geographic scope of the data is restricted to tropical and subtropical areas, whereas water-energy variables dominate when colder areas are included. In major models, about 20-35% of species in the various global regions (European, Africa, etc.) will disappear from each grid cell by 2050 and >50% could be vulnerable or threatened by 2080. This study provides good explanations for predictive models and future changes in biodiversity depending on various scenarios.

Statistical Characteristics of Southern Oscillation and its Barometric Pressure Data

  • Kawamura, Akira;Jinno, Kenji;Eguchi, Soichiro
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(II)
    • /
    • pp.1195-1204
    • /
    • 2002
  • The impacts of El Nino Southern Oscillation (ENSO) phenomenon on climate are widespread and extend far beyond the tropical Pacific. The phenomenon can be characterized by Southern Oscillation Index (SOI) which is derived from values of the monthly mean sea level pressure barometric difference between Tahiti and Darwin, Australia. Its best-known extreme is the El Nino event. In this study, general statistical characteristics of SOI and the data from which it is derived (i.e. mean sea level pressure data at Tahiti and Darwin) are presented as guidance when using SOI far other analyses. The characteristics include the availability of the barometric pressure data, statistics of monthly pressure data, correlation of SO intensity, frequency analysis of SOI by magnitude and by month (January-December), duration properties of SOI by run analysis.

  • PDF

표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망 (Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea)

  • 남원호
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

물 공급을 위한 에너지 사용 요인분해 분석: Water-Energy Nexus 관점에서 (Decomposition Analysis of Energy Use for Water Supply: From the Water-Energy Nexus Perspective)

  • 유재호;조연희;김하나;전의찬
    • 한국물환경학회지
    • /
    • 제38권5호
    • /
    • pp.240-246
    • /
    • 2022
  • Water and energy are inextricably linked and referred to as 'Water-Energy Nexus'. Recently, this topic has been drawing a lot of attention from various studies due to the exacerbated water availability. Korea's water and energy consumption has been increasing consistently, which calls for better management. This paper aims to identify changes in electricity consumption in relation to water intake and purification processes. Using Log Mean Divisia Index (LMDI) Decomposition Analysis method, this study attributes the changes to major factors such as; Total population (population effect), household/population (structure effect), GDP/household (economic effect), and water-related energy use/GDP (unit effect). The population effect, structure effect, and economic effect contributed to an increase in water-related electricity consumption, while the unit effect contributed to a decrease. As of 2019, the economic effect increased the water supply sector's electricity consumption by 534 GWh, the population effect increased by 73 GWh, and the structure effect increased by 243 GWh. In contrast, the unit effect decreased the electricity consumption by -461 GWh. We would like to make the following suggestions based on the findings of this study; first, the unit effect must be improved by increasing the energy efficiency of water intake and purification plants and installing renewable energy power generation facilities. Second, the structure effect is expected to increase over time, and to mitigate it, water consumption must be reduced through water conservation policies and the improvement of water facilities. Finally, the findings of this study are expected to be used as foundational data for integrated water and energy management.

Relating Hyperspectral Image Bands and Vegetation Indices to Corn and Soybean Yield

  • Jang Gab-Sue;Sudduth Kenneth A.;Hong Suk-Young;Kitchen Newell R.;Palm Harlan L.
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.183-197
    • /
    • 2006
  • Combinations of visible and near-infrared (NIR) bands in an image are widely used for estimating vegetation vigor and productivity. Using this approach to understand within-field grain crop variability could allow pre-harvest estimates of yield, and might enable mapping of yield variations without use of a combine yield monitor. The objective of this study was to estimate within-field variations in crop yield using vegetation indices derived from hyperspectral images. Hyperspectral images were acquired using an aerial sensor on multiple dates during the 2003 and 2004 cropping seasons for corn and soybean fields in central Missouri. Vegetation indices, including intensity normalized red (NR), intensity normalized green (NG), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and soil-adjusted vegetation index (SAVI), were derived from the images using wavelengths from 440 nm to 850 nm, with bands selected using an iterative procedure. Accuracy of yield estimation models based on these vegetation indices was assessed by comparison with combine yield monitor data. In 2003, late-season NG provided the best estimation of both corn $(r^2\;=\;0.632)$ and soybean $(r^2\;=\;0.467)$ yields. Stepwise multiple linear regression using multiple hyperspectral bands was also used to estimate yield, and explained similar amounts of yield variation. Corn yield variability was better modeled than was soybean yield variability. Remote sensing was better able to estimate yields in the 2003 season when crop growth was limited by water availability, especially on drought-prone portions of the fields. In 2004, when timely rains during the growing season provided adequate moisture across entire fields and yield variability was less, remote sensing estimates of yield were much poorer $(r^2<0.3)$.

SWAT 모형과 TOPSIS 기법을 이용한 우리나라 물이용 취약성 평가 (Parameteric Assessment of Water Use Vulnerability of South Korea using SWAT model and TOPSIS)

  • 원광재;성장현;정은성
    • 한국수자원학회논문집
    • /
    • 제48권8호
    • /
    • pp.647-657
    • /
    • 2015
  • 본 연구는 국내 12개수계인 한강, 안성천, 금강, 삽교천, 영산강, 섬진강, 탐진강, 만경강, 동진강, 낙동강, 태화강, 형산강 유역에 대한 물이용 취약성 평가를 실시하였다. SWAT(Soil and Water Assessment Tool) 모형을 이용하여 국내 12개 수계의 연유출량을 도출하였고, 각 유역별 면적 및 인구당 유출량을 비교하였다. 취약성 평가를 위해 18개 지표로 구성하였고, 물이용의 수요, 손실 및 공급의 측면으로 구분하였다. 이때의 가중치는 객관적 가중치의 적용을 위해 엔트로피(Entropy)방법을 사용하였고 정량적인 물이용 취약성 평가를 위해 다기준 의사결정기법 중 하나인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) 기법을 적용하였다. 그 결과, 형산강의 물이용이 가장 취약하였고, 삽교천, 동진강, 섬진강, 안성천, 만경강, 낙동강, 탐진강, 영산강, 금강, 태화강, 한강 순이었다. 본 연구 결과는 향후 기후변화 취약성 평가를 위한 지표 개발에 이용할 수 있겠다.

드론 원격정보 격자크기가 실제증발산량 산정에 미치는 영향 (Influence of Scaling in Drone-based Remotely Sensed Information on Actual Evapotranspiration Estimation)

  • 이길하
    • 한국환경과학회지
    • /
    • 제27권2호
    • /
    • pp.135-141
    • /
    • 2018
  • The specification of surface vegetation is essential for simulating actual evapotranspiration of water resources. The availability of land cover maps based on remotely collected data makes the specification of surface vegetation easier. The spatial resolution of hydrologic models rarely matches the spatial scales of the vegetation data needed, and remotely collected vegetation data often are upscaled up to conform to the hydrologic model scale. In this study, the effects of the grid scale of of surface vegetation on the results of actual evapotranspiration were examined. The results show that the coarser resolution causes larger error in relative terms and that a more realistic description of area-averaged vegetation nature and characteristics needs to be considered when calculating actual evapotranspiration.