• Title/Summary/Keyword: Wastewater treatment pond system

Search Result 26, Processing Time 0.023 seconds

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF

The Case of Industrial Factory Wastewater Treatment and Reusing by Using of Constructed Wetland (식물정화조를 이용한 공업용 폐수의 정화 및 재활용 사례)

  • 김혜주;이옥하
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2002
  • Constructed wetland was built for industrial factory wastewater treatment with environmentally sound method from July to October, 2000. Ultimately this case study was carried out to conserve water quality of river and underground water and to provide wildlife habitat and rest place for people in the industrial area. The size of constructed wetland was 10m$\times$6m (upper area) with a treatment capacity of 2.5㎥ per day. It was supplied with wastewater 0.625㎥ at intervals of six hours. Vertical flow system was chosen to promote efficiency. Draining layer was built one meter in soil depth out of sand mixed with pebbles in a ratio of two to one. Perennial emergent plants, Phragmites communis, Typha orientalis, Juncus effusus, Iris pseudoacorus, 20 individuals per square meter were planted. In the aspect of reusing, eco-pond was created for increasing biological species diversity and also deck and information signboard were established for the education of environment. As the result of monitoring, it was revealed that the constructed wetland was effective in removal of BOD$_{5}$, COD, T-N, T-P and has being gradually improved as a wildlife habitat(biotope).

Bench-Scale Evaluation of the Activated Sludge Process for Treatment of a High-Strength Chemical Plant Wastewater (활성슬러지법에 의한 고농도 중화학공장 폐수처리에 관한 연구)

  • 조영하
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.1-16
    • /
    • 1993
  • This paper describes an investigation to determine whether the activated sludge (AS) process could be used for the treatment of wastewater at the Union Carbide Coporation (UCC) plant in Seadrift, Texas. This plant presently utilizes a waste stabilization pond (WSP) system for treatment of the wastewater. The treatment system consists of an in-plant primary WSP and two off-plant WSPs (secondary and tertiary WSPs), run in series. The total hydraulic detention time of the WSP system is approximately 150 days. Several laboratory-based treatability studies have been conducted to evaluate the performace of the WSP system and the degradability of specific chemical compounds. From an additional study, it was determined that the WSP system was stressed and occasionally operating near the limit of its treatment capacity. The existing primary WSP plays an important role in the overall treatmemt system, because it not only functions as a pH and organic-strength equalization basin, but also serves as a "preconditioning" basin by fermenting high strength organic wastes to volatile organic acids for subsequent degradation in the escondary WSP. However, in view of pending RCRA legislatin conerning the "proposed organic toxicity characteristics limits" (40 CFR Part261: Federal Register, July, 1988), it is possible that the primary WSP will have to be abandoned in favor of alternative treatment options. Therefore the main purpose of this study was to perform activated sludge treatability evaluations for the development of an alternative to the existing primary WSP treatment ststem. In addition, another purpose was to determine the degradability of bis(2-chloroethyl)ether (Chlorex or CX) and benzene(BZ) in the activated sludge process. The presence of these two chemicals in the wastewater of the plant prompted the question of whatedether they could be degraded in an activated sludge system.

  • PDF

A Study on the Removal of TNT(2,4,6-trinitrotoluene) using Marsh and Pond Type Microcosm Wetland Systems (Marsh와 Pond 형태의 Microcosm 습지 시스템을 이용한 TNT(2,4,6-trinitrotoluene)의 분해 연구)

  • Choi, Jong-Kyu;Kim, Se-Kyung;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • This study was carried out to investigate the removal of TNT (2,4,6-trinitrotoluene) in the batch and continuous type microcosm systems consisting of marsh and pond. First, the batch reactor study showed that TNT (10 mg/L) was completely removed in the marsh and pond system within 20 days. The major reductive metabolites of TNT include 4-amino-2,6-dinitrotoluene (4-ADNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT). These metabolites concentration also decreased during further treatment. The continuous reactor systems combining marsh and pond indicated the similar pattern of TNT degadation and the metabolites production. Among the continuous reactor combinations, marsh-pond system showed more stable TNT removal and metabolites production. The toxicity of the effluent from the continuous system was examined by Microtox Assay using Vibrio fischeri. The result showed that the effluent toxicity was reduced below toxicity endpoint ($EC_{50}$) after continuous marsh pond system, indicating that metabolites of TNT are less toxic than TNT itself. Based on the results, TNT contaminated wastewater can be efficiently treated using marsh and pond wetland systems.

A Study on the Treatment of Parathion Pesticide Using Marsh and Pond Type Constructed Wetlands (Marsh와 Pond 형태의 인공 습지를 이용한 Parathion 농약의 처리에 관한 연구)

  • Kim, Se-Kyung;Choi , Jong-Kyu;Oh, Se-Hee;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.214-220
    • /
    • 2004
  • The microcosm type wetland systems were constructed in order to treat wastewater contaminated with parathion. The microcosm reactor consisted of marsh and pond type. The experiment was carried out using batch (marsh or pond) and continuous (marsh-pond and pond-marsh type) systems. In the batch reactor, marsh-type wetland completely removed parathion in water within 8 days, while pond reactor removed 97% of parathion during the same period. During parathion degradation, the amount of 4-nitrophenol production, one of the metabolites from parathion degradation, was higher in marsh-type batch reactor. In the continuous systems, both marsh-pond and pond-marsh combination systems effectively removed parathion from water, and the production of 4-nitrophenol was also minimal. In the extraction experiment, the parathion and its metabolite were not found in the wetland soil and the plant. In order to achieve both aerobic and anaerobic conditions, the continuous wetland system combining marsh and pond type can be the alternative for the non-point source pollutants such as parathion pesticide.

Wastewater Treatment Eco-pond by Using Energy Circulation System (에너지 순환시스템을 이용한 생태연못의 수질개선)

  • Kim, Min-Young;No, Hwang-Won;Lee, Seung-Yoon;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2127-2131
    • /
    • 2008
  • 본 연구는 자연생태하에서 지속가능한 태양에너지와 생태계작용에 의한 수질개선기법을 개발하기 위하여 생태연못을 설치하여 수질부하가 발생함에 따라 생태연못에 에너지를 순환시켜 생태적 수질정화 기능을 강화하는데 목적을 두었다. 본 연구에서 생태연못(Eco-Pond) 시스템의 수질개선 원리는 수중(유입수)의 침전, 유기산 생성, 메탄 발효, 호기성 산화, 광합성 산소배출 및 병원균 제거 등을 촉진시키기 위한 목적으로 축산농가 및 마을단위의 축산 및 생활하수 유입부에서 생태연못을 두어 수질을 개선하는 공법 즉, 산화조(Oxidation Pond)에 SolaBee 시스템을 결합한 모델을 제안하였다. 에너지 순환장치를 이용한 수질개선 방안으로는 태양열 연못 내에 물순환장치를 만들어 수체를 효율적으로 순환시키고 공기를 혼합시켜 부영양화가 진행되는 연못이 수질을 자연친화적으로 개선시키도록 하였다. 따라서 연구결과 태양에너지는 다른 자연에너지(풍력 등)에 비해서 에너지 밀도는 낮지만 지역의존성이 적고 그 양이 방대하여 21세기 중요한 에너지원으로 사용가능성을 확인할 수 있었다. 본 연구에서 제시된 에너지 순환구조를 가진 생태연못 시스템은 우리나라 중소규모의 농촌 및 축산농가에 보급 될 수 있는 수질개선 시스템이다.

  • PDF

Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond (고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF

The Development of An Environmentally Friendly Constructed Wetland System (친환경형 식물 정화조 시스템 개발)

  • Lee, Eun-Heui;Rhee, In-Sook;Jung, Dong-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.61-68
    • /
    • 2004
  • The purpose of this study was to develop environmentally friendly constructed wetland system in order to improve the environment. This system was constructed with two constructed wetlands andone pond. The size of the first and second wetland was 2.5m in length, 2.5m in width and 0.7m in depth for the first wetland and 0.6m in depth for the second wetland. Those were filled with pebbles with about 16~32mm in diameter from bottom to 20cm depth and onto the pebbles with about 0.5 mm in diameter sand in depth 40cm. The first constructed Wetland was planted with pragmites communis. The second was planted with Iris pseudoacorus and Acorus calamus var. aneustatus.A vertical flow system was used in the first constructed wetland and a horizontal flow system in the second. The water of outflow from the second wetland flowed into the pond. This system was installed in Yangpyeong, Kyunggi Province. The Quality of inflow and outflow were analyzed at the first time from May 20 to May 30, 2002 and at second time from June 10 to July 18, 2002. At the second period wetland was implanted with microbes in order to improve the efficiency of constructed wetlands. Following standard methods for wastewater, BOD, COD, SS, T-N and T-P were analyzed. This system was effective in reducing COD, BOD, SS, T-N and T-P level. The result shows that wastewater was purified through constructed wetland system with plants and highly purified with microbes especially in T-P. The Average total phosphorous concentration of influent and effluent in constructed wetland with microbes was 2.8mg/${\ell}$ L and 0.21mg/${\ell}$ respectively. This system can be used in rural community because this is not only effective on purification of sewage but also is harmonized with the surrounding nature.

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

The Nutrients Removal in Aerobic High Rate Ponds Through the Lighting Period (빛의 조사기간으로 본 호기성 고율 안정조 프로세스의 영양물질 제거)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • It is not too much to say that the territorial inhabitants' concerns are wholly c concentrated on the environmental preservation-problem and development-problem in Korea given effect to the local self-government system. At a time like this I was studied the effect on nutrients removal through lighting period in aerobic high rate pond and we know that waste stabilization pond method is the most economical and energy saving wastewater treatment technology than others. At the results which was studied through operating the reactor-l artifically main-tained at a temperature, $25^{\circ}C$, a light intensity, 3000lux, and a lighting period, 24hrs and the reactor-2 artifically maintained at a tern야rature, $25^{\circ}C$ and a light intensity 3000lux, and a lighting period period, 12hrs, It has appeared for 24hrs.-lighting period -reactor-1 to be prior to the reactor-2. The attained results are that 1. reactor-1 is prior to reactor-2 on oxygen-generation 2. reactor-1 is prior to reactor-2 on algal production 3. COD removal efficiency, 90.76%, T-N removal efficiency, 80%, T-P removal e efficiency, 74.47 % in reactor-2, in reactor-1 COD removal efficiency, 94.85 %, T-N removal efficiency, 98.07%, T-P removal efficiency, 72.13% are, so the treatment efficiency of reactor-1 is more excellent than things of reactor-2 4. it appeared that the detention time is 8, 9days.

  • PDF