• Title/Summary/Keyword: Wastewater treatment effluent

Search Result 675, Processing Time 0.021 seconds

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Applicability Evaluation of the Wastewater Treatment System Using Magnetic Ion Exchange Resin in the Existing Wastewater Treatment Plant (기존하수처리장에서 자성체 이온교환수지를 이용한 하수처리공정 적용가능성 평가)

  • Park, Chan G.;Kim, Hee S.;Lee, Jung M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • The optimal removal efficiency to develop wastewater treatment system using the magnetic ion exchange resin. The secondary sedimentation effluent of wastewater in W wastewater treatment plant located in Gyeong-gi Province was used as the influent. To compare the sedimentation effluent reacted with the magnetic ion exchange resin to the influent, the concentrations of CODmm, TN, $NO{_3}^-$-N and TP were measured. The flux of the influent and HRT were set to 250 mL/min, 10 min, respectively, and BVTR has adjusted to 200, 150, 100. The removal efficiency of CODmn, TN, $NO{_3}^-$-N and TP in the 200 BVTR from 71%, 40.37%, 46.34%, 42.03%, 150 BVTR from 55.22%, 37.83%, 50.38% 41.6% and 100 BVTR from 74%, 59.15%, 79.94%, 79.16%, respectively. The results on 200 BVTR, 150 BVTR, 100 BVTR tests show that 100 BVTR is the optimal factor capable of the highest rate of rejection of the organic material.

A Study on the Determination Method of TOC Effluent Limitation for Public Sewage Treatment Plants (하수처리시설의 방류수 수질기준 설정방법 고찰 - TOC를 중심으로 -)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyunghee;Chung, Hyen-Mi;Park, Hoowon;Shin, Hyunsang;Hur, Jin;Han, Daeho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.241-251
    • /
    • 2016
  • As the Enforcement Ordinance of Environmental Policy Act was revised in 2013, total organic carbon(TOC) was added as an indicative parameter for organic matter in Water and Aquatic Ecosystem Environmental Criteria. Under these imminent circumstances, a regulatory standard is needed to achieve the proposed TOC limitation control water quality from the public sewage treatment plants(PSTWs). This study purposes to present the determination method for TOC effluent limitation at the PSTWs. Therefore we investigate the TOC effluent limitation of foreign countries such as EU, Germany and USA, and analyse the effluent water qualities of PSTWs. In using these TOC data, we review apprehensively the statistics-based, the technology-based, and the region(water quality)-based determination method of TOC effluent limitation for PSTWs.

Genotoxic and Neurotoxic Potential in Marine Fishes Exposed to Sewage Effluent from a Wastewater Treatment Plant

  • Park, So-Yun;Kim, So-Jung;Rhee, Yong;Yum, Seung-Shic;Kwon, Tae-Dong;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.265-271
    • /
    • 2009
  • Concentrations of industrial, agricultural and natural chemicals have been increasing in secondary effluents without their combined sub-lethal effects having been elucidated. In this study, two assays (the comet and acetylcholinesterase assays) were combined to evaluate the genotoxic and neurotoxic effects of effluent from the Noksan wastewater treatment plant (WWTP) on two local marine fish species (flounder and sea eel). The fish were exposed to WWTP secondary effluent that had been diluted with filtered seawater to final concentrations of 1%, 10% and 50%. Analysis of fish samples collected 3 and 5 days after exposure showed that DNA damage occurred in flounder exposed to 50% effluent and in sea eels exposed to 10% or 50% effluent. Furthermore, it was found that acetylcholinesterase (EC:3.1.1.7, AChE) activity decreased in both species when exposed to 10% effluent, indicating the presence of large amounts of genotoxic and neurotoxic chemicals in the effluent. Our results indicate that the comet and AChE assays are promising tools for biomonitoring of secondary effluents.

Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater

  • Kim, Daegi;Min, Kyung Jin;Lee, Kwanyong;Yu, Min Sung;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Struvite precipitation has been proven to be an effective method in removing and recovering ammonia nitrogen (N) and phosphate phosphorus (P) from wastewater. In this study, effects of pH, molar ratios and pre-treatment of effluent of anaerobically digested swine wastewater were investigated to improve struvite crystallization. The magnesium : ammonium : phosphate ratio of 1.2 : 1.0 : 1.0 was found to be optimal, yet the molar ratio in the wastewater was 1 : 74.9 : 1.8. From the analysis, the optimum pH was between 8.0 and 9.0 for maximal phosphate P release and from 8.0 to 10.0 for maximal ammonia N and phosphate P removal from real wastewater. Analysis from Visual MINTEQ predicted the pH range of 7-11 for ammonia N and phosphate P removal and recovery as struvite. For pre-treatment, microwave pre-treatment was ineffective for phosphate P release but ultrasound pre-treatment showed up to 77.4% phosphate P release at 1,000 kJ/L of energy dose. Precipitates analysis showed that phosphorus and magnesium in the collected precipitate had almost same values as theoretical values, but the ammonia content was less than the theoretical value.

Performance Anaysis of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리장 방류수를 이용한 소수력발전 성능분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.494-497
    • /
    • 2012
  • A methodology to predict the output performance of small hydro power using treated effluent in wastewater treatment plant has been studied. Existing plant located Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in wastewater treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed.

  • PDF

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Ecotoxicity Assessment of Industrial Effluent in Gyeonggi-do (경기지역 산업시설 방류수 생태독성 영향 평가)

  • Cho, Won-Sil;Kim, Sang-Hoon;Yang, Hyoung-Jae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-123
    • /
    • 2011
  • Objectives: Industrial development in Korea results in a rapid increase in the number of chemicals, some of which may be responsible for toxicity to aquatic ecosystems. In addition, the types of hazardous chemicals included in industrial effluents have gradually increased. Therefore, chemical analysis alone is not enough to assess ecological effects of toxic chemicals in wastewater. Methods: In response to new regulations as whole effluent toxicity (WET) tests for effluent discharge of 15 publicly owned treatment works (POTWs) and 25 industrial effluent treatment plants in Gyeonggi-do, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels. Results: In case of the public treatment plants, none of them had exceeded the criteria for ecotoxicity. As for individual wastewater discharge facilities, on the other hand, two types were found to exceed the criteria: pulp and paper manufacturing facilities and pharmaceutical manufacturing facilities. For the pulp and paper manufacturing facilities, monitoring results could not help determine the exact toxicant identification. However, Daphnia magna inhibition effect or death was found to leave white plums, suggesting that suspended solids treated and the polymer used in coagulant dose. In case of pharmaceutical manufacturing facilities, the general water quality parameters cannot affect Daphia magna. However, conductivity and salinity can have an effect to be 14,000 ${\mu}s/cm$, 8.1‰ by salts, respectively. Toxicity Identification Evaluation (TIE) and Toxicity Reduction Evaluation (TRE) procedures results appeared to be effective for identifying toxic compounds in $Cl^{-}$ and $SO_4^{2-}$. Conclusions: It is necessary to develop control measures for water treatment chemicals and salts used for processes such as coagulation in individual wastewater discharge facilities in order to achieve the goal to protect aquatic ecosystems in public waters.

An Experimental Study on the Application of Electrolysis to Nightsoil Treatment Plant Effluent, as a Means of Advanced Treatment Techonology (전해처리법(電解處理法)에 의한 분뇨(糞尿) 2차 처리수(處理水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Chung, Kyeong Jin;Kim, Dong Min;Lee, Dong Houn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 1995
  • The effluent from conventional nightsoil treatment plants contains nutrients, color and chlorides, in addition to residual organics and suspended solids, and thereby causes substantial pollution problems in receving water resources. In order to verify the usefullness of electrolysis in removing those residual pollutants from such conventional nightsoil treatment plant effluent, a bench scale experiment was conducted using sufficiently dilluted human nightsoil as experiment feeds. The result showed mean removals of 45% of total phosphorus and 85% of color, in addition 87% of residual BOD, 47% of residual COD and 85% of residual SS. The optimum electric current was found to be 15 ampere and the optimum hydraulic residence time 21/2 hour.

  • PDF

A GIS database for reuse wastewater resource inventory for agriculture (생활하수의 농업대체용수 활용을 위한 GIS 구축)

  • Chun, Man-Bok;Kim, Jin-Taek
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.259-262
    • /
    • 2003
  • Surveyed effluent capacities for potential wastewater resources through the surveying of the sewage treatment plants its capacity is up to 10,000 tonnes per day located 4 provinces (kyunggi, gangwon, chungbuk, chungnam) in this year. The total effluent capacities in this provinces are 423 thousand $m^3/day$, which may be used to irrigated paddy fields of 2,310ha A GIS database for wastewater resource inventory was developed for 4 provinces (kyunggi, gangwon, chungbuk, chungnam) to explore the feasibility of the wastewater reuse for drought mitigation. And it is to be extended to the other wastewater treatment plants.

  • PDF