• 제목/요약/키워드: Wastewater treatment effluent

검색결과 675건 처리시간 0.025초

인공습지의 농촌지역 오수정화시설에 적용가능성 연구 (Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area)

  • 윤춘경;권순국;권태영
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

순산소 활성오니공정을 이용한 제지폐수처리의 동력학적 해석 (Kinetic Analysis for Paper-mill Wastewater Treatment Using Pure Oxygen Activated Sludge Process)

  • 김성순;정태학
    • 상하수도학회지
    • /
    • 제14권2호
    • /
    • pp.157-163
    • /
    • 2000
  • An experimental study was conducted to evaluate the treatment efficiency of paper-mill wastewater using pure oxygen activated sludge process. Effects of hydraulic retention time (HRT) and organic loading on process performance and kinetics were investigated. The raw paper-mill wastewater(BOD concentration ${\leq}500mg/L$) and the effluent from dissolved air flotation(DAF) treatment(BOD concentration ${\geq}500mg/L$) were used as influent for pure oxygen activated sludge process. Average BOD removal efficiencies were above 89.3% under 6hours or longer of HRT, while under 3hours of HRT they decreased to about 82%. With the effluent from DAF process, the half saturation constants($K_S$) and the maximum specific substrate removal rate($K_{max}$) were 85 mg/L and 2.25 L/day, respectively. However, with the raw paper-mill wastewater, both $K_S$ and $K_{max}$ increased to 156 mg/L and 3.84 L/day, respectively. The microbial yield coefficient(Y) and the decay coefficient($K_d$) were 0.46 gVSS/gBOD and 0.03 L/day, respectively, with effluent from DAF process. While, Y and $K_d$ were 0.24 gVSS/gBOD and 0.035 L/day, respectively, with the raw paper-mill wastewater.

  • PDF

폐수특성 및 처리기술에 근거한 산업폐수 배출허용기준 설정체계 연구 (Establishment of Effluent Limitation based on Wastewater Characteristics and Treatment Technology)

  • 권오상;정진영;허태영;전항배;이연희;박상민
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.804-812
    • /
    • 2012
  • This study contemplated domestic and other country's effluent limitation standards and suggested a methodology to establish technology-base limitation value. Current effluent limitation regulates industrial point sources discriminated by discharge flow rate and by regional distinction in Korea. Discharged $BOD_5$ load from large-scale plants(flow rate above $2,000\;m^3/day)$ exceeds 50% of overall industrial wastewater, which present rationale for discrimination based on plant size. However, regional distinction and pollutant- specific regulation might be insufficient to meet practical effectiveness of wastewater management policy, due to the nearly same limitation. Water quality data and treatment methods were investigated in hospital industry. And their distribution of effluent $BOD_5$ concentrations was statistically analyzed to suggest limitation value. Effluent $BOD_5$ concentrations showed lognormal distribution and $95^{th}$ percentile was corresponded to 87.9 mg/L, which could be suggested as tentative effluent limitation in hospital industry. The $95^{th}$ percentile of log-transformed distribution showed similar value of 86.5 mg/L. This study demonstrated reasonable methodology for establishing effluent limitation reflecting wastewater characteristic and treatment technology in separately categorized industry.

$A_2O$ 공법 처리장의 Bioindicator (Bioindicator at $A_2O$ Wastewater Treatment Plant)

  • 이찬형;문경숙
    • 한국환경보건학회지
    • /
    • 제31권1호
    • /
    • pp.55-60
    • /
    • 2005
  • The occurrence and abundance of protozoa at advanced wastewater treatment plant were compared with operating parameters and effluent quality using statistical procedures. In correlation analysis between the distribution of protozoa and operating parameters, the distribution of protozoa was showed the operating condition of plant. Regression analysis between the distribution of protozoa and effluent quality up to 7 days, showed the R-square values of most regression equation were more than 0.6 and constant was higher than slope and could indicate effluent quality from sampling day to 7 days. Once enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future effluent quality based on microscopic examination. Plant operator manipulates operating conditions if he knows near-future data of effluent is deteriorating. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris microalgae

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.401-408
    • /
    • 2016
  • The aim of this study was to evaluate the biomass and lipid production of Chlorella vulgaris and its nutrient removal capability for treatment of brewery wastewater effluent. The results indicate that the maximum biochemical oxygen demand (BOD) (91.43%) and chemical oxygen demand (COD) (83.11%) were removed by C. vulgaris with aeration in the absence of light. A maximum of 0.917 g/L of dry biomass was obtained with aeration in the dark conditions, which also demonstrated the highest amount of unsaturated fatty acids at 83.22%. However, the removal of total nitrogen (TN) and total phosphorus (TP) with these aeration and light conditions was 9.7% and 11.86% greater than that of other conditions. The removal of BOD and COD and the production of biomass and lipids with aeration in the dark and the TN and TP removal with aeration and light were more effective than other conditions in the brewery wastewater effluent in the presence of C. vulgaris.

DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구 (Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation))

  • 이병호;김성혁;이상배;김미정
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

KS-62 균주에 의한 펄프 표백 폐액처리에 관한 연구 (Studies on the Treatment of Pulp Bleaching Effluent with KS-62 Fungus)

  • 조준형;은주영
    • 펄프종이기술
    • /
    • 제32권1호
    • /
    • pp.86-93
    • /
    • 2000
  • High Colored kraft bleaching effluent is one of the main constrains in pulp and paper industry due to its dissloved lignin derivatives. The degradation of lignin in pulp and paper mill effluent is mainly caused by white-rot fungi. This paper showed that the treatment with KS-62 fungus significantly reduced the color and chemical oxygen demand in the effluent. The amounts of Mn ions in the wastewater would play roles in the induction and activity of MnP (Managanese peroxidase). Extracellular MnP was isolated from the fungus KS-62. The treatment with the MnP had the most effective decolorizatiion in the wastewater treatment using nutrients mediu.

  • PDF

고도폐수처리장에서 원생동물을 이용한 수질예측 (Protozoa as an Indicator of Effluent Quality at Advanced Wastewater Treatment Plants)

  • 이찬형;문경숙;박상정;이은주;조재근;진익렬
    • 대한환경공학회지
    • /
    • 제28권4호
    • /
    • pp.389-396
    • /
    • 2006
  • 고도폐수처리장의 원생동물의 분포를 주별로 조사하였다. 통계방법을 이용하여 원생동물의 개체수와 운영조건, 유출수질을 분석하였다. 유입수의 성상과 처리장의 운영조건에 영향을 받아 처리장별로 원생동물 분포가 다르게 나타났다. 통계분석을 통해, 원생동물의 분포로 현재 운영중인 처리장의 운영조건을 알 수 있고 가까운 미래의 유출수질을 예측할 수 있었다. 처리장의 원생동물 분포, 유출수질, 운영조건 자료들이 충분히 확보되면 원생동물 관찰에 의해 처리장의 운영현황 및 가까운 미래의 수질예측이 가능해진다. 수질예측이 가능함으로 운영조건을 조기변동 하여 처리수질을 양호하게 유지할 수 있다. 장기적으로는 가장 좋은 유출수질때 나타나는 원생동물의 분포를 얻을 수 있도록 처리장의 운영조건을 변경함으로 좋은 유출수질을 얻을 수 있다.

생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성 (Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent)

  • 송영채;오경근
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

낙동강 유역에 위치한 폐수처리시설 최종방류수의 수질과 항생물질 분석 (Analysis of Water Quality Components and Antibiotics in the Final Effluent of Wastewater Treatment Facilities in the Nakdong River Basin)

  • 박경덕;강동환;조원기;유훈선;윤연수;김병우
    • 한국환경과학회지
    • /
    • 제29권8호
    • /
    • pp.857-870
    • /
    • 2020
  • In this study, the antibiotic components in the final effluent from the 12 wastewater treatment facilities located in the Nakdong River basin were investigated, and the correlation between organic matters, nutrients and antibiotics was analyzed. In the final effluent of the wastewater treatment facilities, three sulfonamides antibiotics (sulfamethazine, sulfathiazole, sulfachlorpyridazine) and tetracyclines antibiotics (oxytetracycline, doxycycline) were detected. Sulfamethazine were detected at all points and ranged from 10.398 to 278.784 ng/L. Sulfathiazole were detected at 6 points (Andong, Gumi, Hapcheon, Miryang, Uiryeong, Haman), and ranged from 23.773 to 144.468 ng/L. The correlation coefficients between sulfathiazole and TSS, COD, TOC, NH3-N, NO2-N, and T-N components were high in the range of 0.73 to 0.92. The correlation coefficient between sulfamethazine and T-N was 0.48, and the correlation with the rest of the water quality components was low. The correlation coefficient between sulfamethazine and sulfathiazole was 0.78. Through this study, it was confirmed that the concentration of sulfonamides antibiotics was higher than the concentration of tetracyclines antibiotics in the final effluent of 12 wastewater treatment facilities in the Nakdong River basin, and the concentration of sulfathiazole increased with organic matters and nutrients.