• 제목/요약/키워드: Wastewater effluents

Search Result 166, Processing Time 0.033 seconds

Performance of a submerged membrane bioreactor for wastewater mimicking fish meal processing effluent

  • Lopez, Guadalupe;Almendariz, Francisco J.;Heran, Marc;Lesage, Geoffroy;Perez, Sergio
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.263-271
    • /
    • 2018
  • The objective of this work was to analyze organic matter removal, nitrification, biomass growth and membrane fouling in a submerged flat-sheet membrane bioreactor, fed with synthetic wastewater, of similar composition to the effluents generated in a fish meal industry. After biomass acclimatization with saline conditions of 12 gNaCl/L and COD/N ratio of 15 in the bioreactor, results showed that the organic matter removal was higher than 90%, for all organic loading rates (0.8, 1, 1.33 and $2gCOD/L{\cdot}d$) and nitrogen loading rates (0.053, 0.067, 0.089 and $0.133gN/L{\cdot}d$) tested during the study. However, nitrification was only carried out with the lowest OLR ($0.8gCOD/L{\cdot}d$) and NLR ($0.053gN/L{\cdot}d$). An excessive concentration of organic matter in the wastewater appears as a limiting factor to this process' operating conditions, where nitrification values of 65% were reached, including nitrogen assimilation to produce biomass. The analysis of membrane fouling showed that the bio-cake formation at the membrane surface is the most impacting mechanism responsible of this phenomenon and it was demonstrated that organic and nitrogen loading rates variations affected membrane fouling rate.

Determination of antibiotics by SPE-LC-MS/MS in wastewater and risk assessment

  • Aydin, Senar;Aydin, Mehmet E.;Ulvi, Arzu;Kilic, Havva
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.201-212
    • /
    • 2018
  • In this study, conditions of solid phase extraction (SPE) for determination of some antibiotics such as trimethoprim, oxytetracycline, erythromycin, clarithromycin, azythromycin, doxycycline, sulfamethazine, ciprofloxacin, chlortetracycline, sulfamethoxazole in wastewaters were optimized. After the optimum volume and pH of the sample were determined, the effect of the concentration of the compounds and matrix were investigated. The highest recovery rates for antibiotic compounds were determined between 82% and 105% in 200 mL sample volume and pH 2.5. Then, antibiotic compounds were investigated in influent and effluent samples taken from Konya Urban Wastewater Treatment Plant. The concentration of the antibiotics was detected range of 0.11-101 ng/L in influent waters and

Streamflow Estimation Using Conservative Chemical Species Dissolved in the Effluents of Wastewater Treatment Plant (하수종말처리장 방류수내의 보존성 화학종들을 이용한 하천유량측정)

  • 김강주;이지선;오창환;황갑수;유재연;김진삼;여성구
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.91-94
    • /
    • 2000
  • 유량측정용 수공구조물이 설치되지 않은 일반 하천에서는 하천의 유속과 유수단면적을 측정하는 방법이 유량산정에 흔하게 이용된다. 그러나, 이러한 방법은 비교적 많은 노력이 소요될 뿐 아니라, 유량이 아주 많거나 작은 하천, 그리고, 극심한 난류하천 둥에서는 상당히 많은 오차를 포함한다는 단점이 있다. 반면, 추적자시험법은 매우 정확한 측정법으로, 나류하천에도 적용될 수 있다는 장점이 있다. (중략)

  • PDF

Chronic Toxicities of Effluents from Dye Industry using Daphnia magna (물벼룩을 이용한 일부 염색폐수의 만성 수질독성 특성 연구)

  • Kim Younghee;Lee Minjung;Eo Soomi;Yoo Namjong;Lee Hongkeun;Choi Kyungho
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.146-151
    • /
    • 2005
  • Recent studies indicated the utility of whole effluent assessment as a measure to control discharge of toxic effluents to receiving water in Korea. However, most studies have been focussed on acute lethal effects of toxic wastewater with little consideration of chronic sublethal impacts which are of growing concern in protecting aquatic ecosystem. We conducted acute and chronic toxicity tests with effluents discharged from five different dyeing plants in Gyeong-gi province using a marine bacterium Vibrio fischeri and a freshwater macroinvertebrate Daphnia magna to demonstrate the importance of assessing chronic sublethal effects. Various levels of acute and chronic toxicities were observed in many samples tested in this study. In 21-d chronic toxicity tests using D. magna all samples showed effects on reproduction and growth. Notable mortalities were also noted in three out of five effluents. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from two out of five plants and acute daphnid toxicity was observed in only one effluent. The result of this study clearly suggests chronic toxicity tests are more suitable to assess biological effects of effluents because it was shown from this study that even an effluent with no acute toxicity could cause chronically lethal and/or sublethal adverse effects on aquatic biota which may affect the population dynamics in aquatic ecosystem.

Evaluation of RO Process Feasibility and Membrane Fouling for Wastewater Reuse (하수처리수 재이용을 위한 RO 공정의 타당성 및 막오염 평가)

  • Hong, Keewoong;Lee, Sangyoup;Kim, Changwoo;Boo, Chanhee;Park, Myunggyun;An, Hochul;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.289-296
    • /
    • 2010
  • The purpose of this study is to evaluate various pre-treatment methods and proprieties of water quality for wastewater reuse using reverse osmosis (RO) processes. Secondary effluents were sampled from wastewater treatment plants and lab scale pre-treatments and RO filtration test were conducted systematically. Specifically, different types of pre-treatments, such as coagulation, microfiltration and ultrafiltration, were employed to evaluate the removal efficiency of particle and organic matters which may affect the membrane fouling rate. RO process was later added to eliminate trace amounts of remaining organic matters and salt from the raw water for wastewater reclamation. The permeate through the RO process satisfied water quality regulations for industrial water uses. The experimental results showed that the initial fouling tendency differed not only by the feed water properties but also by the membrane characteristics. Membrane fouling was greater for the membranes with large surface roughness, regardless of the hydrophobicity and zeta potentials. Thus both careful consideration of pre-treatment options and proper selection of RO membrane are of paramount importance for an efficient operation of wastewater treatment.

Inactivation of various bacteriophages in wastewater by chlorination; Development of more reliable bacteriophage indicator systems for water reuse (하수 처리 과정의 염소 소독에 대한 여러 박테리오파지들의 저항성 평가; 물 재이용 과정의 안전성 관리를 위한 바이러스 지표미생물의 개발)

  • Bae, Kyung-Seon;Shin, Gwy-Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.285-291
    • /
    • 2016
  • There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at $5^{\circ}C$ in a bench-scale batch disinfection system. The inactivation of ${\phi}X174$ was relatively rapid and reached ~4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for ${\phi}X174$ and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.

Removal of textile dyes in wastewater using polyelectrolytes containing tetrazole groups

  • Caldera-Villalobos, Martin;Pelaez-Cid, Alejandra-Alicia;Martins-Alho, Miriam-Amelia;Herrera-Gonzalez, Ana-Maria
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2394-2402
    • /
    • 2018
  • Textile dyes are some of the pollutants which have received the most attention because of the large volume of wastewater generated by the textile industry. Removal by means of adsorption is one of the most versatile alternatives to treat these effluents. Even though different adsorbents such as activated carbons and mineral materials have been proposed, polymeric adsorbents are a viable alternative. This work reports for the first time the use of polyelectrolyte PTZ and macroelectrolyte MTZ containing tetrazole groups as adsorbents useful in the textile dyes removal present in aqueous solutions and wastewater. Because of the anionic character of the tetrazole group, MTZ exhibits selective adsorption capabilities for cationic dyes of up to $156.25mg{\cdot}g^{-1}$. The kinetic study of the process of adsorption shows that PTZ and MTZ fit a pseudo second-order model. MTZ also shows utility as a flocculant agent in the treatment of wastewater containing dyes Indigo Blue and Reactive Black. The results showed that PTZ and MTZ may be used in the treatment of wastewater in a process of coagulation-flocculation followed by the treatment by adsorption. This two-stage treatment removed up to 95% of the dye present in the wastewater. As well as removing the dyes, the values for COD, suspended solids, pH, and color of the wastewater decreased, thus significantly improving its quality.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

Advanced Wastewater Treatment-Natural Septic Method of Rural Housing sewage Using an Aquatic Plants (수생식물을 이용한 농촌주택 하수의 고도처리 자연정화법)

  • Shin, Banwoong;Bang, Seongtaek;Shin, Minchul;Lee, Sangeul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.89-100
    • /
    • 2000
  • Recently, according to the increase of population and rapid growth of industry, the amount of effluent pollutant has been rising in natural water. In these pollutant, nutrients such as nitrogen and phosphor are told that these evolve the odor, color and eutrophication in rural housing sewage and lake regulary. Many researches have been carried out to remove these nutrients from effluents and will have to be studied more deeply. Especially, because of the sewage of rural housing and livestock, environmental pollution raises serious problem in a rural community. This method is developed to solve the problem environmentally friendly. Using the natural energy(wasteheat, earthheat, solar engery) and the growth properties of aquatic plants are most efficient method to absorb the nutrients and denitrification and phosphor uptake.

  • PDF