• Title/Summary/Keyword: Wastewater effluents

Search Result 167, Processing Time 0.022 seconds

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

A Conceptual Zero-Discharge System for Water Quality Management of the Nak-Dong River (낙동강 수질관리 방안-하수분리 무방류시스템의 개념적 고찰)

  • Park, Hee-Kyung;Hyun, In-Hwan;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.40-49
    • /
    • 1997
  • From water management point of view, the industrialization that we have achieved in the last decades brought out two major changes: water shortage and water quality deterioration. They are getting the big obstacles we must overcome to continuously pursue industrialization for further development in the next century. Many plans using dams and advanced treatment methods have been developed for control of quantity and quality, respectively. In this paper, an alternative is conceptually reviewed which is much different from the plans in regard that the alternative looks at system itself. It is based on an interceptor system coupling with a concept of zero-discharge. This system allows no discharge of wastewaters from point-sources to waterbodies which are very sensitive in terms of water quality. In addition reuse of treated effluents is emphasized to a maximum extent. The application of the system to the Nak-Dong river basin indicated that an interceptor system will need from the middle reaches of the basin where industrialization gets heavier. Since wastewaters are not directly discharged to the river, water quality of the down stream will improve. Treated effluents will be able to be reused at a number of industrial complex which currently get water from the Nak-Dong river. This reuse will help alleviate water shortage. The biggest problem anticipated is cost for building and operating such system. A cost-sharing plan among the beneficiaries is considered. Further research is suggested focusing on detailed engineering and technical matters for potential implementation.

  • PDF

Genotoxic and Neurotoxic Potential in Marine Fishes Exposed to Sewage Effluent from a Wastewater Treatment Plant

  • Park, So-Yun;Kim, So-Jung;Rhee, Yong;Yum, Seung-Shic;Kwon, Tae-Dong;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.265-271
    • /
    • 2009
  • Concentrations of industrial, agricultural and natural chemicals have been increasing in secondary effluents without their combined sub-lethal effects having been elucidated. In this study, two assays (the comet and acetylcholinesterase assays) were combined to evaluate the genotoxic and neurotoxic effects of effluent from the Noksan wastewater treatment plant (WWTP) on two local marine fish species (flounder and sea eel). The fish were exposed to WWTP secondary effluent that had been diluted with filtered seawater to final concentrations of 1%, 10% and 50%. Analysis of fish samples collected 3 and 5 days after exposure showed that DNA damage occurred in flounder exposed to 50% effluent and in sea eels exposed to 10% or 50% effluent. Furthermore, it was found that acetylcholinesterase (EC:3.1.1.7, AChE) activity decreased in both species when exposed to 10% effluent, indicating the presence of large amounts of genotoxic and neurotoxic chemicals in the effluent. Our results indicate that the comet and AChE assays are promising tools for biomonitoring of secondary effluents.

Effect of NOD on BOD Test for the Effluents of Biological Treatment Plant (하수처리장 유출수의 NOD를 고려한 BOD 측정에 관한 연구)

  • Jang, Se-joo;Lee, Seong-ho;Park, Hae-sik;Park, Chung-kil
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.188-192
    • /
    • 2007
  • The biochemical oxygen demand (BOD) test is widely used to determine the pollution strength of water, to evaluate the performance of wastewater treatment plants and to judge compliance with discharge permits. However, nitrification is a cause of significant errors in measuring BOD, particularly when a large population of nitrifying organisms is existing in water such as effluents from biological treatment plants. In order to investigate the amount of nitrogenous oxygen demand (NOD), BOD with and without inhibitor was measured as samples in the biological treatment plants. About 81% of effluent BOD from the biological treatment plant used in this experiment was comprised of NOD. In the case of influents, the NOD accounted for about 9% of BOD. The inhibited 5-day BOD (Carbonaceous BOD) test must be considered in evaluating the performance of wastewater treatment plant and judging compliance with discharge permit limitations.

Ecotoxicity Test of Wastewater by a Battery of Bioassay and Toxicity Identification Evaluation (다양한 시험생물종을 이용한 산업폐수 생태독성 평가 및 원인물질 탐색)

  • Ryu, Tae-Kwon;Cho, Jae-Gu;Kim, Kyung-Tae;Yang, Chang-Yong;Joung, Ki-Eun;Yoon, Jun-Heon;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Toxicity identification and quantification are important factors to evaluate the effect of industrial effluent on the aquatic environment. In order to measure the potential and real toxicity of mixed chemicals in the effluents, the biological method (i.e., WET test) should be used as well as chemical analysis method. In this study, we conducted WET test for various kinds of industrial effluents using aquatic organisms such as water flea (Daphnia magna), algae (Pseudokirchneriella subcapitata), fish (Oryzias latipes, Danio rerio), and microorganism (Vibrio fisheri). In addition, we carried out chemical analysis and TIE (Toxicity Identification Evaluation) for effluents in order to identify the substances causing toxicity. Among the 30 kinds of wastewater, S13 showed the highest eco-toxicity and $Ca^{2+}$ and $Cl^-$ ion were suspected as major compounds causing toxicity for aquatic organisms. In order to confirm these suspected compounds, various confirmation procedures need to be carried out.

Optimization of Zero-valent Iron Technology for Color Removal from Real Dye Wastewater (염색폐수 색도 제거를 위한 영가철 기술 최적화)

  • Lee, Jae Woo;Oh, Young Khee;Cha, Daniel K.;Lee, Taewon;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.758-763
    • /
    • 2009
  • This study presents the optimal conditions of zero-valent iron (ZVI) pretreatment for color removal from real dye wastewater. Removal of color by ZVI was strongly subject to the acidity of the wastewater buffering the pH increased after ZVI reduction. The real dye wastewater did not contain a sufficient amount of acidity and thus it was necessary to supplement acid to the dye wastewater before treatment. In continuous operation of iron column, the empty bed contact time (EBCT) and initial pH were varied to find the optimal conditions. A non-linear regression model fitted well the experimental result predicting that the optimal EBCT and pH for 80% removal efficiency was present in the range of 57~90 and 5~5.9, respectively. Color of column effluents could be further removed in the following biological oxidation step and the biodegradability of wastewater was also enhanced after iron pretreatment.

Estogenic and Dioxin-like Activity of Influent and Effluent of the Industrial Wastewater Treatment Plant

  • Oh, Seung-Min;Kim, Gi-Sur;Kim, Soung-Ho;Kim, Yun-Hee;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.166-166
    • /
    • 2002
  • The response of environmental pollutants can be detected bioanalytically focusing on the source and matrices of concern. Cell culture bioassays are rapid and inexpensive, and thus have great potential for determination of environmental pollution. We have examined the estrogenic and dioxin-like activites of industrial wastewater using E-screen assay and EROD microbioassay. Influent and effluent wastewater were collected from four different industrial wastewater treatment plants, such as cosmetics, paints, textile producing and metal coating plant, and extracted using solid-phase extraction with Oasis@HLB plus cartridge. Pollutants adsorbed to the cartridge were eluted with MTBE. MCF-7 cells were treated with extracts showed various estrogenic potential. The textile wastewater showed strong estrogenic activity and the others showed weak estrogenic activity, No effect was observed in the wastewater from paints producing plant. All extracts showed CYPIA inducing effects, indicating these samples contain dioxin-like chemicals. Bioanalytical results of effluents compared with influents could give us information about the incomplete wastewater treatment and biological potency caused by pollutants. [Supported by a Grant from the Korea Science and Engineering Foundation]

  • PDF

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

A Microbial Consortium for the Bioremediation of Sulfate-Rich Wastewater Originating from an Edible Oil Industry

  • Pascual, Javier;Rodriguez, Alejandro;Delgado, Clara Elena;Rizo-Patron, Alejandra;Porcar, Manuel;Vilanova, Cristina
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.110-121
    • /
    • 2022
  • The effluents from industries processing vegetable oils are extremely rich in sulfates, often exceeding the maximum concentration allowed to release them to the environment. Biological sulfate reduction is a promising alternative for the removal of sulfates in this type of wastewater, which has other particularities such as an acidic pH. The ability to reduce sulfates has been widely described for a particular bacterial group (SRB: sulfate-reducing bacteria), although the reports describing its application for the treatment of sulfate-rich industrial wastewaters are scarce. In this work, we describe the use of a natural SRB-based consortium able to remove above 30% of sulfates in the wastewater from one of the largest edible oil industries in Peru. Metataxonomic analysis was used to analyse the interdependencies established between SRB and the native microbiota present in the wastewater samples, and the performance of the consortium was quantified for different sulfate concentrations in laboratory-scale reactors. Our results pave the way towards the use of this consortium as a low-cost, sustainable alternative for the treatment of larger volumes of wastewater coming from this type of industries.