• Title/Summary/Keyword: Wastewater effluents

Search Result 167, Processing Time 0.031 seconds

Photocatalytic Membrane for Degradation of Antibiotics: A Review (항생제 분해용 광촉매막: 리뷰)

  • Rabea, Kahkahni;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.304-313
    • /
    • 2022
  • There is evidence that the presence of active pharmaceutical ingredient (APIs) are a danger for aquatic ecosystems and the human health. The presence of APIs such as tetracycline, an antibiotic, in water causes antimicrobial resistance (AMR) in microorganisms inflicting enormous costs on individuals and society. Membranes embedded with catalysts such as TiO2 or bismuth based catalysts degrade and separate the organic effluents from wastewater. The photocatalytic activity of the catalysts can be enhanced with noble metal doping and addition of carbonaceous materials and formation of heterojunction with other semiconductors. The recollection of photoctalysts is possible through the immobilization of the photocatalysts in polymeric membranes. In this review, the degradation of antibiotics in water is discussed.

Cyanobacterial Bioassay (AGP test) on the Water Fertility of Treated Wastewater Effluents Discharged into Euiam and Paldang Reservoirs, Korea (의암호 및 팔당호에 유입되는 주요 하수처리 방류수의 수질 비옥도 생물검정: Algal Growth Potential(AGP) Test)

  • Seo, Wanbum;Lee, Su-Woong;Kim, Keonhee;Park, Chaehong;Choi, Bong-Geun;Sim, Yeon Bo;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.79-95
    • /
    • 2017
  • Euiam and Paldang Reservoirs have often been facing water quality problems, such as eutrophication, algal blooms and off-flavors by treated wastewater effluent (TWE) in the North-Han and the Han River basins, but little is examined on the direct biological effect of TWE. This study tested algal growth potential (AGP) of four TWEs discharged into Euiam and Paldang Reservoirs to evaluate water fertility in September 2014 and March and September 2015. Test alga was used Anabaena circinalis isolated from Paldang Reservoir. Mean concentration of T-N and T-P in TWEs was $3,956.7{\mu}g\;N\;L^{-1}$ and $50.8{\mu}g\;P\;L^{-1}$, and the proportion of $NO_3-N$ and $PO_4-P$ to the total fraction was 72.1% and 40.8%, respectively. Both N and P were high in TWEs, but much higher N than P concentration indicates strong P-limitation. As a consequence, the maximum AGP was determined by $PO_4-P$ concentration (r=0.998, p<0.01). Mean AGP value was $15.4mg\;dw\;L^{-1}$ among four effluents indicating its eutrophic condition. Due to the establishment of tertiary (advanced T-P) treatment method in the studied plants recently, P concentration was significantly decreased in TWEs compared to the years prior to 2012. However, P concentration seems to be still high enough to cause eutrophication and algal blooms. Therefore, wastewater treatment to P-free level needs to be considered if effluents are directly discharged into the drinking water resources.

Assessments of Dissolved Rare Earth Elements and Anthropogenic Gadolinium Concentrations in Different Processes of Wastewater Treatment Plant in Busan, Korea (부산 하수처리장에서 공정별 용존 희토류 원소의 농도 및 인위적 기원 가돌리늄의 배출량 평가)

  • Lim, Ijin;Ryu, Jong-Sik;Lee, Joonyeob;Lee, Jun-Ho;Cho, Hyung-Mi;Kim, Taejin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.303-311
    • /
    • 2022
  • Gadolinium, commonly used as a contrast agent for magnetic resonance imaging (MRI), is discharged into aquatic environments without removal after treatment in wastewater treatment plants (WWTPs) because of its high stability. In this study, we collected water samples from Suyeong WWTP, Busan, to investigate the dissolved rare earth element (REE) removal capacity of each wastewater treatment process and to evaluate the discharge of anthropogenic Gd (Gdanth) from effluents. As wastewater passed through each stage of treatment, the concentrations of light REEs (La-Eu) decreased, whereas those of heavy REEs (Tb-Lu) were relatively consistent. Negative Sm anomalies (<1) were observed in several samples, indicating that Sm can be removed by adsorption onto particles or phosphate during the biological removal process. Positive Gd anomalies (149±50, n=9) were observed in all samples. The ratios of Gdanth concentrations to measured Gd concentrations in all wastewater treatment processes were higher than 97%. This indicates that Gdanth was discharged to the Suyeong River without removal during the wastewater treatment process. Considering the daily treatment capacity in each process, the total flux of Gdanth was estimated to be 259 mmol/day. Our results suggest that mid- and/or long-term monitoring of Gd is needed because Gdanth is continuously discharged into Suyeong Bay through WWTPs.

A Whole Cell Bioluminescent Biosensor for the Detection of Membrane-Damaging Toxicity

  • Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.59-62
    • /
    • 1999
  • The recombinant bacteria strain DPD2540, containing a fabA::luxCDABE fusion, was used to detect the toxicity of various chemicals in this study. Membrane damaging agents such as phenol, ethanol, and cerulenin induced a rapid bioluminescent response from this strain. Other toxic agents, such as DNA-damaging or oxidative-damaging chemicals, showed a delayed bioluminescent response in which the maximum peak appeared over 150 min after induction. This strain was also tested for measurement of toxicity in field samples such as wastewater and river water effluents.

  • PDF

A Study on the Nutrient Removal of Wastewater Using Scenedemus sp. (Scenedesmus sp.를 이용한 하수의 영양물질 제거에 관한 연구)

  • 이희자
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.443-449
    • /
    • 1999
  • This paper describe the working of algal culture system under batch and continuous feeding effluents in biological treatment process. The main objective of this study was the determination of fundamental opeating parameters such as dilution rates, light intensity, biomass concentration, nutrients contents, which engender an effective nutrient and organic waste removal process. The results of this research indicate that the algae system will remove effectively nutrient and organic waste. In batch cultures, 91.8% dissolved orthophosphate and 83.3% ammonia nitrogen were removed from the sewage in ten days. In continuous flow systems, a detention time of 2.5 days was found adequate to remove 91% T-P, 87% T-N and 95% $NH_3-N$. At 22-28$^{\circ}C$, 60 rpm, with an intensity of 3500 Lux, the specific growth rate, k was 0.59/day in batch experiments. The optimal growth temperature and nutrients rate (N/P) were respectively $25^{\circ}C$ and 3~5. With an abundant supply of untrients, it was possible to sustain substantial population densities in the temperature range of 22~28$^{\circ}C$.

  • PDF

Evaluation of Toxicity Influenced by Ion Imbalance in Wastewater (폐수에서 이온불균형문제가 생태독성에 미치는 영향 평가)

  • Shin, Kisik;Kim, Jongmin;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2018
  • This paper aims to evaluate the results of toxicity testing with Daphnia magna and Vibrio fischeri on wastewater samples which might be influenced by ion imbalance. The effluents from factories were found to be more toxic with high salinity levels than those from public wastewater treatment plant (WTP) and sewage treatment plant (SWP). Clion composition was highest in the effluent, in terms of percentage, which was followed by $Na^+$, $SO_4^{2-}$ and $Ca^{2+}$. $K^+$ and $Mg^{2+}$ ion was relatively low. The sensitivity of D. magna test results was higher than V. fischeri. Among samples which were proved by V. fischeri testing to be nontoxic, the composition ratio of each ion whether toxic samples or nontoxic samples which were decided by D. magna toxicity testing, were compared. $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ ion composition ratio showed high level in nontoxic samples whereas $SO_4^{2-}$ and $Cl^-$ ion composition ratio was high in toxic samples. Accordingly, $SO_4^{2-}$ and $Cl^-$ ion seemed to be considered the ions causing toxicity in effluent. Toxicity from some categories of industries (Mining of non-metallic minerals, Manufacture of basic organic petrochemicals, Manufacture of other basic organic chemicals, Manufacture of other chemical products etc.) seemed to be influenced by salinity. The Ion concentration in influent and effluent were similar. Concentration of $Na^+$, $Cl^-$, $K^+$, $Ca^{2+}$ ions were high in influent, however $Mg^{2+}$ and $SO_4^{2-}$ ions were high in effluent.

Ecotoxicity Assessment of Industrial Effluent in Gyeonggi-do (경기지역 산업시설 방류수 생태독성 영향 평가)

  • Cho, Won-Sil;Kim, Sang-Hoon;Yang, Hyoung-Jae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-123
    • /
    • 2011
  • Objectives: Industrial development in Korea results in a rapid increase in the number of chemicals, some of which may be responsible for toxicity to aquatic ecosystems. In addition, the types of hazardous chemicals included in industrial effluents have gradually increased. Therefore, chemical analysis alone is not enough to assess ecological effects of toxic chemicals in wastewater. Methods: In response to new regulations as whole effluent toxicity (WET) tests for effluent discharge of 15 publicly owned treatment works (POTWs) and 25 industrial effluent treatment plants in Gyeonggi-do, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels. Results: In case of the public treatment plants, none of them had exceeded the criteria for ecotoxicity. As for individual wastewater discharge facilities, on the other hand, two types were found to exceed the criteria: pulp and paper manufacturing facilities and pharmaceutical manufacturing facilities. For the pulp and paper manufacturing facilities, monitoring results could not help determine the exact toxicant identification. However, Daphnia magna inhibition effect or death was found to leave white plums, suggesting that suspended solids treated and the polymer used in coagulant dose. In case of pharmaceutical manufacturing facilities, the general water quality parameters cannot affect Daphia magna. However, conductivity and salinity can have an effect to be 14,000 ${\mu}s/cm$, 8.1‰ by salts, respectively. Toxicity Identification Evaluation (TIE) and Toxicity Reduction Evaluation (TRE) procedures results appeared to be effective for identifying toxic compounds in $Cl^{-}$ and $SO_4^{2-}$. Conclusions: It is necessary to develop control measures for water treatment chemicals and salts used for processes such as coagulation in individual wastewater discharge facilities in order to achieve the goal to protect aquatic ecosystems in public waters.

Isolation and Charaterization of Dye-Degrading Microorganisms for Treatment of Chromaticity Contained in Industrial Dyeing Wastewater (염색공단폐수의 색도처리를 위한 염료분해 균주의 분리와 특성)

  • Kim, Jung Tae;Park, Guen Tae;Lee, Geon;Kang, Kyeong Hwan;Kim, Joong Kyun;Lee, Sang Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.129-142
    • /
    • 2014
  • To treat chromaticity contained in effluents of dyeing wastewater efficiently, potent dye-degrading microorganisms were isolated from influent water, aeration- tank sludge, recycle water and settling-tank sludge located in leather and dyeing treatment plant. Six potent strains were finally isolated and identified as Comamonas testosteroni, Methylobacteriaceae bacterium, Stenotrophomonas sp., Kluyveromyces fragilis, Ascomycetes sp. and Basidiomycetes sp. When Basidiomycetes sp. was inoculated into ME medium containing basal mixed-dyes, 93% of color was removed after 8 days incubation. In the same experiment, the 1:1 mixed culture of Basidiomycetes sp. and photosynthetic bacterium exhibited 88% of color removal; however, it showed better color removal for single-color dyes. The aeration-tank and settling-tank samples revealed higher color removal (95-96%) for black dyes. The settling-tank sample also revealed higher color removal on basal mixed-dyes, which resulted in 90% color removal after 6-h incubation. From the above results, it is expected to achieve a higher color removal using the mixed microorganisms that were isolated from aeration-tank and settling-tank samples.

Effects of Nitrate Ions on Advanced Oxidation of UV/H2O2 for 2,4-Dichlomphenol Degradation (UV/H2O2를 이용한 2,4-DCP의 산화에 NO3- 이온이 미치는 영향)

  • Park, Jae Han;Lee, Ji Yong;Ahn, Yoon Hee;Moon, Tae Hoon;Yim, Sung Kyun;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.319-323
    • /
    • 2007
  • The Advanced Oxidation Process (AOP) is being increasingly used to oxidize complex organic constituents in treated effluents from domestic wastewater treatment plants. Generally, ${NO_3}^--N$ concentrations ranges between 5 and 8 mg/L for biologically well-treated effluents. However, nitrate ions, ${NO_3}^-$, affects on oxidation as not only a well-known strong absorber of UV light below 250 nm of wavelength but also as an OH radical scavenger. The objective of this study was to evaluate the AOP systems for degradation of 2,4-DCP, and to delineate the effect of nitrate ions on UV oxidation of 2,4-DCP by conducting a bench-scale operation at various reaction times and initial concentrations of $H_2O_2$. The experimental results indicated that 2,4-DCP could be completely oxidized by $UV/H_2O_2$ process with an initial $H_2O_2$ concentration of 20 mg/L at a retention time of 1.0 min or longer. Nitrate ions did not show any adverse effect on 2,4-DCP oxidation at this high $H_2O_2$ concentration, and the practical initial $H_2O_2$ concentration and reaction time for the 80% oxidation turned out to be 5 mg/L and 1.0 min, respectively.

Assessment of Korean Water Quality Standards for Effluent Discharged from the Dye Industry Based on Acute Aquatic Toxicity Tests Using Microbes and Macroinvertebrates (염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구)

  • Kim, Young-Hee;Lee, Min-Jung;Choi, Kyung-Ho;Eo, Soo-Mi;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Acute aquatic toxicity of effluents discharged from five dyeing plants in Gyeong-gi province were evaluated to assess whether the current Korean water quality standards(KWQS) could protect aquatic life. Chemical analyses of all parameters regulated under KWQS, except for E-coli, were also carried out to determine regulation compliance of the samples. All the effluent samples were satisfied with KWQS except for the color in only one sample. In acute Daphnia magna toxicity tests, significant mortality was observed in one of five samples and EC50 was 12.1%(95% confidence interval 9.1-16.2), which was in compliance with KWQS. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from three out of five plants, two of which were in compliance with KWQS. The agreement between regulation compliance of chemical concentrations of effluent and observed toxicity from various biological toxicity tests was very poor to fair (kappa = 0.194~0.250). The data presented suggest that exposure to dyeing wastewater which were in compliance with Korean water quality standards may not be safe to aquatic biota, and multiple tropical levels should be considered in aquatic toxicity monitoring of dyeing industry.