• Title/Summary/Keyword: Wastewater effluent

Search Result 880, Processing Time 0.022 seconds

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Evaluation on Environmental Bio-toxicity of Industrial Wastewater (산업폐수의 생물독성 발현에 관한 연구)

  • Kim, S.H.;Cheon, S.U.;Shin, K.S.;Jung, D.I.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.274-276
    • /
    • 2005
  • To investigate bioassay for toxic level evaluation of wastewater, toxic levels were checked influents and effluents of 6 wastewater discharge facilities with Daphnia magna and Vibrio fischeri. In view of test duration, D. magna is preferred at 48 hours. And it was judged to efficient that one of the two was choosen for toxicity test method (Daphnia test and Vibrio test). Analysis data for wastewater is average toxic level for influent more higher than effluent. And effluent toxic level is sharp decrease than effluents.

Estogenic and Dioxin-like Activity of Influent and Effluent of the Industrial Wastewater Treatment Plant

  • Oh, Seung-Min;Kim, Gi-Sur;Kim, Soung-Ho;Kim, Yun-Hee;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.166-166
    • /
    • 2002
  • The response of environmental pollutants can be detected bioanalytically focusing on the source and matrices of concern. Cell culture bioassays are rapid and inexpensive, and thus have great potential for determination of environmental pollution. We have examined the estrogenic and dioxin-like activites of industrial wastewater using E-screen assay and EROD microbioassay. Influent and effluent wastewater were collected from four different industrial wastewater treatment plants, such as cosmetics, paints, textile producing and metal coating plant, and extracted using solid-phase extraction with Oasis@HLB plus cartridge. Pollutants adsorbed to the cartridge were eluted with MTBE. MCF-7 cells were treated with extracts showed various estrogenic potential. The textile wastewater showed strong estrogenic activity and the others showed weak estrogenic activity, No effect was observed in the wastewater from paints producing plant. All extracts showed CYPIA inducing effects, indicating these samples contain dioxin-like chemicals. Bioanalytical results of effluents compared with influents could give us information about the incomplete wastewater treatment and biological potency caused by pollutants. [Supported by a Grant from the Korea Science and Engineering Foundation]

  • PDF

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Combined Treatment of Livestock Wastewater with Sewage Using Phanerochaete chrysosporium PSBL-1 (Phanerochaete chrysosporium PSBL-1을 이용한 축산폐수와 하수의 연계처리)

  • Lee, Soon-Young;Cho, Hong-Sik;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.286-291
    • /
    • 2006
  • We studied possibility of mixing treatment of livestock wastewater and sewage using Phanerochaete chrysosporium PSBL-1. Our study showed that 97.6% of SS and 95% of T-P removal efficiency was achieved when 2 mL BF02(a coagulant) and 100 mL C-210EL(a cationic polymer) were added to the mixture(2:1, v/v) of livestock wastewater and sewage. We studied treatment characteristic of Phanerochaete chrysosporium PSBL-1, after were mixed pretreated wastewater and sewage by dillution ten times about livestock wastewater. The removal efficiency of NBDCOD(non-biodegradable COD), $NH_3-N$ and T-N was increased according to increase of pH. That is, T-N concentration of effluent was satisfied 60 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities with 35 mg/L from a lapse of five days at pH 6.7, 51 mg/L from a lapse of three days at pH 8 and 33 mg/L from a lapse of one day at pH 10. Moreover $COD_{Mn}$ concentration of effluent was satisfied 40 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities after a laps of one day at all pH. Organics and nitrogen concentrations of effluent were higher case with addition of V.A.(veratryl alcohol) than case without addition of V.A.(veratryl alcohol). $COD_{Mn}$ concentration of effluent satisfied drain water qulity standard of livestock wastewater public treatment facilities from a lapse of one day, when C/N rate(3:1) of influent was not controled. T-N satisfied that from a lapse of two days, when C/N rate was controled with $4{\sim}6$.

A Study on the Identification of Phenol Production by GC/MS under Chemical Treatment of Industrial Wastewater (화학적 폐수처리 중 GC/MS에 의한 폐놀생성 규명에 관한 연구)

  • 박선구;고오석;신대윤
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 2000
  • Twenty organic chemical substances(Table 2) were isolated from untreated wastewater, as well as treated wastewater, collected at 76 companys of 9 industry group located in the basin of Youngsan River. Those organic compounds were analyzed by Gas Chromatography/Mass Spectrometry(GC/MS) and confirmed through comparison with each standard reagents. Phenol, which was not detected in the raw wastewater, was identified in the effluent of treatment facility, indicating that phenol is generated from isopropylbenzene of plant wastewater.

  • PDF

Effect of the Sewage and Wastewater Plant Effluent on the Algal Growth Potential in the Nakdong River Basin (낙동강 수계 하.폐수 처리시설의 방류수가 조류 성장 잠재력에 미치는 영향)

  • Seo,Jeong-Gwan;Lee,Jae-Jeong;Yang,Sang-Yong;Jeong,Ik-Gyo
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • Effect of the effluent of the sewage and wastewater plants on the algal growth was investigated from the 19 plants located in the Nakdong river basin. Most of the samples showed high values of the algal growth potential (AGP) when they were mixed with natural river water at 20% of final concentration. At 20% of the mixing ratio, the mixed effluents of sewage and wastewater showed 3.5 and 1.8 times higher AGP than those of the natural river water. The higher AGP values are attributable to the high contents of phosphorus and ammonium in the effluent. The mixing ratio of effluents of the discharge/river flow was highest in the Kumho River (42.8%) followed by the middle of Nakdong River (22.7%), Kam Stream (13.9%), Byungsung Stream (13.3%), Yangsan Stream (7.9%), and Young River (5.4%). Comparison of the trophic state of the effluents with natural river water indicated that the effluents showed higher trophic values than natural water. Concentrations of total phosphorus, total nitrogen and conductivity in the effluents were 12.3, 4.9 and 5.3 times higher than the those found in natural river water respectively. The AGP values were highly related with the trophicity of the water especially on the concentrations of phosphate and ammonium. Toxicities of the treated sewage water, wastewater and livestock waste water tested by the luminescent bacteria, Vibrio fischerii were generally low.

Fuzzy Control and Optimization for the Wastewater Treatment Process (퍼지제어기를 이용한 하폐수처리공정의 최적화)

  • 천성표;김봉철;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

Mixing Zone Analysis of Wastewater Effluent Discharged from Sokcho Ocean Outfall (속초 해양방류 하.폐수의 혼합구역에 대한 특성분석)

  • 강시환;박연숙;김상익;이호진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • Mixing zone characteristics of the wastewater effluents discharged from Sokcho ocean outfall have been investigated using an outfall mixing zone model which was developed on the basis of Huang et al.'s(1996) analysis method. The model was applied to Sokcho ocean outfall case and was used to simulate the concentration distribution of wastewater effluents using winter season's data, ie. daily effluent flowrate, ocean current and density stratification data which were measure for two months in the outfall area. Hourly concentration distribution of outfall effluent discharges was calculated and they were averaged for the period of 15 days which covers the ambient flow variability of the neap and the spring tidal currents. The results show that near-field dilution was relatively high with the minimum dilution of 130 for the winter season. The mixing zone was extended to the coastal beach area rather than offshore because of major direction of coastal currents. This may cause a deteriorating impact on coastal water quality, especially to the adjacent swimming beach area.

  • PDF