• Title/Summary/Keyword: Wastewater effluent

Search Result 880, Processing Time 0.028 seconds

Effect of NOD on BOD Test for the Effluents of Biological Treatment Plant (하수처리장 유출수의 NOD를 고려한 BOD 측정에 관한 연구)

  • Jang, Se-joo;Lee, Seong-ho;Park, Hae-sik;Park, Chung-kil
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.188-192
    • /
    • 2007
  • The biochemical oxygen demand (BOD) test is widely used to determine the pollution strength of water, to evaluate the performance of wastewater treatment plants and to judge compliance with discharge permits. However, nitrification is a cause of significant errors in measuring BOD, particularly when a large population of nitrifying organisms is existing in water such as effluents from biological treatment plants. In order to investigate the amount of nitrogenous oxygen demand (NOD), BOD with and without inhibitor was measured as samples in the biological treatment plants. About 81% of effluent BOD from the biological treatment plant used in this experiment was comprised of NOD. In the case of influents, the NOD accounted for about 9% of BOD. The inhibited 5-day BOD (Carbonaceous BOD) test must be considered in evaluating the performance of wastewater treatment plant and judging compliance with discharge permit limitations.

Reverse Osmosis Treatment of Swine Wastewater with Various Pretreatment Systems (축산 폐수의 전처리 방법과 역삼투압 처리)

  • Park, Soon Ju;Kim, Moon Il;Kim, Do Yun;Chang, Ho Nam;Chang, Seung Teak
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • The generation of livestock wastewater in Korea amounts to $130,000m^3/day$, 0.43% of the total waste water volume, but which corresponds to 8.6% of total BOD loading. Furthermore this wastewater contains a large amount of nitrogen and phosphorus that are major causes of eutrophication in rivers and lakes. The average volume of livestock wastewater in a Korea's single farm is only $2.5m^3/day$, which necessitates development of a simple and economical process for the removal of nitrogen and phosphorus. Introduction of filtration method removes more than 90% of suspended solids. Subsequent application of reverse osmosis removes more then 95% of total nitrogen and phosphorus in the wastewater. The effluent of this treatment will yield less than 200 mg/L of total nitrogen and 1 mg/L of total phosphorous, which are lower than 260 mg/L of total N and 50 mg/L of total P, the regulation values of Ministry of Environment, Korea. Treating $2m^3/day$ of livestock wastewater was found to be feasible with the application of filtration and reverse osmosis and the electricity requirement was estimated to be about 30 Kwh/month.

  • PDF

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

A Study on the Anaerobic Treatment of the Phenol-bearing Wastewater with two Sludge Blanket-Packed Bed Reactors in Series (2단의 슬러지-고정상 반응기에서 페놀 함유 폐수의 혐시성 처리에 관한 연구)

  • 정종식;안재동;박동일;신승훈;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 1995
  • This study was carried to investigate the biodegradability of phenol in the wastewater with the two sludge blanket-packed bed reactor in series. Each reactor had a dimension of 0.09 m i.d. and 1.5 m height and consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed of 1 m height. The packed bed region was charged with ceramic raschig rings of 10 mm i.d., 15 mm o.d. and 20 mm length. The reactors were operated at 35$\circ$C and the hydraulic retention time(HRT) was maintained 24 hours. The synthetic wastewater composed of glucose and phenol as major components was fed into the reactor in a continuous mode with incereasing phenol concentration. In addition, the nutrient trace metals($Na^+, Mg^{2+}, Ca^{2+}, PO_4^{3-}, NH_4^+, Co^{2+}, Fe^{2+}$ etc.) were added for growing anaerobes. The phenol concentration of the effluent, the overall gas production, the composition of product gas, the efficiency of COD reduction and the duration of acclimation period were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 2400 mg//l. Successfully stable biodegradation of phenol could be achieved with the anaerobic treatment system from 600 to 1, 800 mg/l of the influent phenol concentration. The upper level of influent phenol loading was high enough to meet most of the practical requirement. The duration of acclimation increased with the phenol loading. At steady state of the influent phenol concentration of 1800 mg/l, the treatment performance indicated the phenol reduction efficiency of 99%, the COD reduction efficiency of 99% and the gas production rate of 37 l/day. At the influent phenol concentration of 2400 mg/l, however, the operation of the treatment system was noted unstable. While the concentration of methane in biogas decreased with increasing the influent phenol loading, the carbon dioxide was increased. However, the concentration of hydrogen was varied negligibly. The concentration of methane was high enough to be used as a fuel. As a result, it is suggested that anaerobic phenol wastewater treament was economical in the sense of energy recovery and wastewater treatment.

  • PDF

A Study on the Characteristic Trace Organic Pollutants in the Industrial Wastewater (산업폐수중 미량유기오염물질 배출 특성)

  • Chung, Y.H.;Kim, S.C.;Shin, S.K.;Kang, I.G.;Lee, J.I.;Lee, W.S.;Lee, J.B.
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.62-72
    • /
    • 1998
  • This study was performed to characterize the trace organic pollutants in the industrial wastewater and to establish the database of the trace organic pollutants. The four manufacturing industries, which are refined petroleum, industrial chemicals, rubber & plastics and fabricated metals, were surveyed. The wastewater and discharging water of these 30 factories are analyzed to characterize the trace organic pollutants. In industrial chemicals, the kinds of products and organic pollutants are very various. Therefore to select the characteristic organic pollutants in this categories are also very difficult. In industrial chemicals, the gas chromatograpic peak patterns of wastewater are represented the various type according to their products, therefore the typical patterns of the characteristic organic pollutants could not be obtained because the kinds of manufactured goods and organic pollutants are very various. In refined petroleum, the effluent is discharged in the distillatory process of atmosphere pressure and contained the saturated hydrocarbons, phenol compounds, benzene compounds and naphtalene compounds. The saturated hydrocarbons peaks from $C_{15}$ to $C_{35}$ are represented the typical oil patterns by the uniform intervals therefore the peak can be easily distinguished. In rubber & plastics, the wastewater is discharged in the washing process which contains the additives. The problem of wastewater is not serious because the manufacturing process is not produced the effluent or the produced cooling water is recycled in that process.

  • PDF

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

Charaterization of Biomass Production and Wastewater Treatability by High-Lipid Algal Species under Municial Wastewater Condition (실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Wastewater treatment using algal communities and biodiesel production from wastewater-cultivated algal biomass is a promising green growth technology. In literature, there are many studies providing information on algal species producing high content of lipid. However, very little is known about adaptability and wastewater treatability of such high-lipid algal species. In this study, we attempted to characterize algal biomass production and wastewater treatability of high-lipid algal species under municipal wastewater condition. For this, four known high-lipid algal strains including Chlorella vulgaris AG 10032, Ankistrodesmus gracilis SAG 278-2, Scenedesmus quadricauda, and Botryococcus braunii UTEX 572 were individually inoculated into municipal wastewater where its indigenuous algal populations were removed prior to the inoculation, and the algae-inoculated wastewater was incubated in the presence of light source (80${\mu}E$) for 9 days in laboratory batch reactors. During the incubations, algal biomass production (dry weight) and the removals of dissolved organics (COD), nitrogen and phosphorous were measured in laboratory batch reactors. According to algal growth results, C. vulgaris, A. gracilis and S. quadricauda exhibited faster growth than indigenuous wastewater algal populations while B. braunii did not. The wastewater-growing strains exhibited efficient removals of total-N, ${NH_4}^+$-N, Total-P and ${PO_4}^{3-}$-P which satisfy the Korea water quality standards for effluent from municipal wastewater treatment plants. A. gracilis and S. quadricauda exhibited efficient and stable treatability of COD but C. vulgaris showed unstable treatability. Taken together with the results, A. gracilis and S. quadricauda were found to be suitable species for biomass production and wastewater treatment under municipal wastewater condition.

High-Rate Phosphorous Removal by PAC (Poly Aluminum Chloride) Coagulation of A2O Effluent (생물공정 처리수의 PAC (Poly Aluminum Chloride) 응집에 의한 고효율 인 제거 특성)

  • Hwang, Eung-Ju;Cheon, Hyo-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.673-678
    • /
    • 2009
  • High-rate phosphorous removal by PAC (poly aluminum chloride) coagulation of A2O effluent was investigate to meet the stringent requirement of wastewater discharge from municipal wastewater treatment plant. A series of jar tests were conducted to find optimum coagulation condition and to enhance removal efficiency. The optimum volumetric concentration of PAC was 30 ppm (2.81mol Al/mol P by mol ratio). Only 17.2% of soluble P was removed for 30 minutes' settling without PAC addition, while this increased to 30.3% by dosing 10ppm PAC. It even increased conspicuously from 49.3% to 88.4% by increasing PAC dose from 20 ppm to 30 ppm. 92.4% of total P was removed by 30 ppm PAC, and the effluent concentration (0.3 mg/L) was acceptable for discharge. The optimum value of coagulation time, settling time, and pH were 4minutes, 20 minutes, and 7.0, respectively. It was not necessary to control pH of raw sample whose pH was 7.0. Soluble P removal was remarkably enhanced at pH 7.0. This implied that sweep floc formation by $Al(OH)_3$ was the main mechanism of coagulation for soluble P removal. Influent and effluent of secondary clarifier were tested for coagulation, and the effluent was better for high-rate P removal. It resulted in 0.18 mg/L of P and 95.4% of P removal by coagulation. It was favorable to recycle the treated water to coagulation tank and the optimum recycle ratio was 0.3.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.