• 제목/요약/키워드: Wastewater effluent

검색결과 880건 처리시간 0.023초

아크릴섬유 폐수의 생물학적 질소제거공정의 개선 (Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater)

  • 이찬원;조인성;임경원
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

DOF(Dissolved Ozone Flotation) 시스템을 이용한 하수처리장 방류수의 고도처리에 대한 연구 (Advanced Secondary Wastewater Treatment Using the DOF (Dissolved Ozone Flotation) System)

  • 이병호;김상희
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.767-774
    • /
    • 2005
  • The DOF (Dissolved Ozone Flotation) system was used to treat the effluent of the secondary wastewater treatment plant. The DOF system uses ozone instead of air, while DAF (Dissolved Air Flotation) uses air. Moreover, since the solubility of ozone is higher than air, the DOF system produces larger volume of micro-bubbles than the DAF system does. Thus, the DOF system performs better than the DAF system in floating ability. The DOF system could remove 70% of turbidity to an average of 0.59NTU in effluent from 2.31NTU in influent. The removal efficiency of absorbance measured with UV-254 in the effluent of the DOF system was 63%, while only 19% was removed by the DAF system. the DOF system removed 84% of the color from 25~26CU to 4CU, while DAF system removed 42% of the color to 15 CU. The CODMn removal efficiency of the DOF system was 34%, 6.8mg/l of effluent $COD_{Mn}$ concentratin, while it was 20%, 8.3mg/L of effluent $COD_{Mn}$ concentratin, to use the DAF system. Microbial bacteria such as coliform bacteria, and heterotrophic bacteria were removed over 99% by the DOF system, and 42~45% by the DAF system. That is, Microbial bacteria were almost completely destroyed by the DOF system. To sum up with, the DOF system was found to be very effective to treat effluent of the wastewater treatment plant.

Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거 (Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System)

  • 손진식;박순호;정의택
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

$A_2O$ 공법 처리장의 Bioindicator (Bioindicator at $A_2O$ Wastewater Treatment Plant)

  • 이찬형;문경숙
    • 한국환경보건학회지
    • /
    • 제31권1호
    • /
    • pp.55-60
    • /
    • 2005
  • The occurrence and abundance of protozoa at advanced wastewater treatment plant were compared with operating parameters and effluent quality using statistical procedures. In correlation analysis between the distribution of protozoa and operating parameters, the distribution of protozoa was showed the operating condition of plant. Regression analysis between the distribution of protozoa and effluent quality up to 7 days, showed the R-square values of most regression equation were more than 0.6 and constant was higher than slope and could indicate effluent quality from sampling day to 7 days. Once enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future effluent quality based on microscopic examination. Plant operator manipulates operating conditions if he knows near-future data of effluent is deteriorating. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

공공하수처리시설에서 수질오염물질 유입 및 배출 특성 고찰 - 산업폐수 및 매립지 침출수 연계처리 시설을 중심으로 - (A study on characteristics of influent and effluent pollutants in public sewage treatment works combined with industrial wastewater and landfill leachate)

  • 정동환;조양석;안경희;김은석;김창수;정현미
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.673-682
    • /
    • 2016
  • In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on "Water Quality Monitoring Networks" in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.

폐수특성 및 처리기술에 근거한 산업폐수 배출허용기준 설정체계 연구 (Establishment of Effluent Limitation based on Wastewater Characteristics and Treatment Technology)

  • 권오상;정진영;허태영;전항배;이연희;박상민
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.804-812
    • /
    • 2012
  • This study contemplated domestic and other country's effluent limitation standards and suggested a methodology to establish technology-base limitation value. Current effluent limitation regulates industrial point sources discriminated by discharge flow rate and by regional distinction in Korea. Discharged $BOD_5$ load from large-scale plants(flow rate above $2,000\;m^3/day)$ exceeds 50% of overall industrial wastewater, which present rationale for discrimination based on plant size. However, regional distinction and pollutant- specific regulation might be insufficient to meet practical effectiveness of wastewater management policy, due to the nearly same limitation. Water quality data and treatment methods were investigated in hospital industry. And their distribution of effluent $BOD_5$ concentrations was statistically analyzed to suggest limitation value. Effluent $BOD_5$ concentrations showed lognormal distribution and $95^{th}$ percentile was corresponded to 87.9 mg/L, which could be suggested as tentative effluent limitation in hospital industry. The $95^{th}$ percentile of log-transformed distribution showed similar value of 86.5 mg/L. This study demonstrated reasonable methodology for establishing effluent limitation reflecting wastewater characteristic and treatment technology in separately categorized industry.

DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구 (Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation))

  • 이병호;김성혁;이상배;김미정
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

염색폐수의 전처리 방법에 따른 활성탄 흡착 처리효율에 관한 연구 (Treatment Efficiency of Activated Carbon Adsorption for Dyeing Wastewater Treated by the Different Pre-treatment Methods)

  • 김선희;이상호
    • 한국환경과학회지
    • /
    • 제15권7호
    • /
    • pp.659-667
    • /
    • 2006
  • This research aims at applicability of adsorption process in order to satisfy the restricted Effluent Quality Standards for dyeing wastewater. The dyeing wastewater treated by biological process with carrier imbedded microorganisms was directly applied to the activated carbon adsorption in Process A, The dyeing wastewater treated by Fenton oxidation for the effluent of biological process was applied to the adsorption in Process B. It was found that the optimum conditions of adsorption with granular activated carbon are $20^{\circ}C$ and 120 minutes for the batch experiment. Langmuir equation was fitted better than Freundlich equation to the experimental data. The breakthrough time of adsorption column was determined by color rather than $COD_{Mn}$ for both Process A and Process B. The results revealed that the breakthrough time of adsorption for two processes was extended by the treatment of Fenton oxidation for dyeing wastewater treated by biological treatment than the direct application of dyeing wastewater treated by the biological treatment. Adsorption process can be applied in order to meet the restricted Effluent Quality Standards for dyeing wastewater.

감마선 처리가 섬유와 안료폐수의 생물독성에 미치는 영향 (Effect of Gamma-ray Treatment on Toxicity of Textile and Pigment Wastewaters)

  • 김은애;조훈제;박은주;김효진;김정규;정진호
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.145-149
    • /
    • 2006
  • Textile and pigment wastewater samples collected from an industrial complex showed toxic effect on Daphnia magna. For textile wastewater, 48 h acute toxicity of effluent was not detected while toxic unit (TU) of influent was 1.79. The toxicity of influent was completely disappeared by gamma-ray treatment at 10 kGy or by suspended solids (SS) removal. In case of pigment wastewater, both influent and effluent were toxic to D. magna though the effluent satisfied current water quality standards. Gamma-ray treatment had little effect on the toxicity reduction of pigment wastewater since the toxicity was mainly caused by metal ions, in particular, Cr(VI). This work suggests the bioassay technique for monitoring adverse effects of wastewater should be introduced, and also shows the usefulness of gamma-rays as an advanced treatment technique for textile wastewater.

CFD와 PIV test를 통한 원형 2차침전지 유입 및 유출배플 형상 최적화 (Optimization of influent and effluent baffle configuration of circular secondary clarifier using CFD and PIV test)

  • 최영균;배강형
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.73-81
    • /
    • 2014
  • One-dimensional flux theory (1DFT) is conventionally used for design of secondary clarifier of wastewater treatment plant. However, the 1DFT cannot describe turbulence, density current, shape parameters of the clarifier. In this study, we optimized the configurations of influent guide baffle and effluent baffle through the simulation using computational fluid dynamics (CFD) and its verification by particle image velocity (PIV) test. The energy dissipating inlet (EDI) without influent guide baffle ($0^{\circ}$) showed the best efficiency for minimizing downward velocity under the center well of the clarifier. The lowest velocity distribution around the effluent weir region could be obtained with the McKinney baffle (EB-2). The performances of the influent and effluent baffles were clearly verified by PIV test results.