• Title/Summary/Keyword: Wastewater Utilization

Search Result 142, Processing Time 0.02 seconds

A Study on the Ozonation Characteristics of the Phenol Contaminated Wastewater by Increasing Phenol Concentration in the Continuous PCR and BCR (연속식 PCR과 BCR에서 페놀 농도 증가에 따른 오존 처리 특성에 관한 연구)

  • Kim, Yong-Dai;Ahn, Jae-Dong;Lee, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.12-19
    • /
    • 1995
  • The objectives of this research prograln were to study the ozonation characteristics of phenol contaminated wastewater in the continuous packed column reactor (PCR) and the bubble column reactor (BCR) using ozone that has a strong oxidizing potential, and to provide the fundamentals of ozonizing the phenol contaminated wastewater. Among various influencing factors on phenol decomposition through the oxidation by ozone, phenol/ozone mde ratio was chosen as reaction parameters. Concerning the phenol/ozone mde ratio, as the influent phenol concentration increased from 30 mg/l to 150 mg/l, the phenol removal efficiency decreased from 99% for 30 mg/l to 83.7% for 150 mg/l, in PCR. PCR also showed higher treatment efficiency than BCR by 1% for 30 mg/l and 2.2% for 150 mg/l, respectively. The ozone utilization efficiency of PCR for the phenol concentration 30 mg/l was higher than that of BCR while the efficiency of both reactors was 99.9% for the phenol concentration of 150 mg/l.

  • PDF

Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane (제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구)

  • Han, Jang Hyuk;Yoon, Tai Il;Cho, Kyung Chul;Song, Jea Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.

A Study on Recycle of Waste Concretes for Neutralization and Removal of Heavy Metals ( I ) (페콘크리트의 중화 및 중금속 제거를 위한 재활용에 관한 연구 (I))

  • Kim, Eun-Ho;Kim, Jung-Kwon;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.497-503
    • /
    • 1997
  • This study was performed to Investigate the utilization of waste concretes for neutralization and removal of heavy metals In plating wastewater, because waste concretes have been known to be very porous, to have high species surface area and to have alkaline minerals such as calcium. The results obtained from this research showed that waste concretes had a buffer capacity to neutralize an acidic alali system in plating wastewater. Generally, neutralization and removal rate of heavy metals were excellent in the increase of waste concrete amounts and a small size. Because a coefficient of correlation was high, it seemed that removal of heavy metals could be explained by Freundlich and Langmuir isotherms. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider waste concretes as a good adsorbent. But, we could know that waste concretes were capable of removing a part of heavy metals. In point of building waste debris, if waste concretes substituted for a valuable adsorbent such as actuated carbon, they could look forward to an expected economical effect.

  • PDF

Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm

  • You, Kwangtae;Kim, Jongrack;Pak, Gijung;Yun, Zuwhan;Kim, Hyunook
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Process modeling with activated sludge models (ASMs) is useful for the design and operational improvement of biological nutrient removal (BNR) processes. Effective utilization of ASMs requires the influent fraction analysis (IFA) of the wastewater treatment plant (WWTP). However, this is difficult due to the time and cost involved in the design and operation steps, thereby declining the simulation reliability. Harmony Search (HS) algorithm was utilized herein to determine the relationships between composite variables and state variables of the model IWA ASM1. Influent fraction analysis was used in estimating fractions of the state variables of the WWTP influent and its application to 9 wastewater treatment processes in South Korea. The results of influent $S_s$ and $Xs+X_{BH}$, which are the most sensitive variables for design of activated sludge process, are estimated within the error ranges of 8.9-14.2% and 3.8-6.4%, respectively. Utilizing the chemical oxygen demand (COD) fraction analysis for influent wastewater, it was possible to predict the concentrations of treated organic matter and nitrogen in 9 full scale BNR processes with high accuracy. In addition, the results of daily influent fraction analysis (D-IFA) method were superior to those of the constant influent fraction analysis (C-IFA) method.

Utilization of Agricultural Residues as Low Cost Adsorbents for the Removal Dyes from Aqueous Solution (농업부산물(農業副産物)을 이용한 염료리용(染料理用) 저가흡착제(低價吸着劑)의 개발동향)

  • Shin, Hee-Duck
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2012
  • This review evaluates a number of different agricultural waste adsorbents and types of dyes. Certain wastewater containing different dye contaminants causes serious environmental problems. Recently, growing research interest in the production of carbon based has been focused on agricultural by-products. Low cost adsorbents derived from agricultural wastes have demonstrated outstanding capabilities for the removal of dyes from waste water. The use of cheap and eco-friendly adsorbents have been studied as an alternative substitution of activated carbon for the removal dyes from wastewater.

The Possibility of Utilizing Stone Powder Sludges as Adsorbents for Heavy Metals (중금속 흡착제로서 석분슬러지의 활용 가능성)

  • 진호일;민경원
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.519-524
    • /
    • 2000
  • This study has been performed to evaluate the possibility of utilizing stone powder sludges from stone quarry and manufacturing plant as adsorbents for heavy metals in industrial wastewater. The stone powder sludges from stone quarry (IS-01) have the most effective adsorption capacity (above 95% of initial concentrations) under the given experimental conditions of reaction times (Pb : 15 min, Cu : 2 hr, Zn : 48 hr), initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges from manufacturing plant (CW-01) show relatively high adsorption capacity (about 95% of initial concentrations) only for Pb with a reaction times of 12 hours, initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges (IS-01) from stone quarry having relatively excellent adsorption capacity under the given experimental conditions show their potential utilization as heavy metal adsorbents.

  • PDF

Development of BIM models and management of BIM data for waterworks maintenance (상수도시설물의 유지관리를 위한 BIM모델 개발 및 BIM 데이터 관리방안)

  • Park, Jaehyun;Lee, Hyundong;Kwak, Pilljae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.669-679
    • /
    • 2014
  • 3D-based BIM(Building Information Modeling) technologies can be utilized effectively as a means of systematic management of facility information for safety assurance and effective maintenance of waterworks facilities. In this study, BIM models of water treatment facilities that can be used as basic data for BIM-based maintenance of waterworks facilities were developed. Information exchange and generality of the developed BIM models were evaluated by conducting interoperability analysis of IFC(Industry Foundation Classes) conversion models. In addition, the application of COBie(Construction Operations Building information exchange) was recommended as an effective countermeasure to deal with technical limitation regarding exchange and utilization of facilities-related information through current IFC models. The results of this study can contribute to the development of BIM-based maintenance system for waterworks facilities.

Wastewater Treatment and Biogas Production by Hydrogen Fermentation(I): Optimum Condition for Hydrogen Production (수소 발효에 의한 폐수처리 및 바이오가스 생산(I): 최적 수소 생산 조건)

  • 선용호;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.351-361
    • /
    • 1991
  • This study is on the investigation of hydrogen production and substrate removal by photosynthetic bacteria. After using of Rhodospillum rubrum KS-301 and IFO 3986, which are photosynthetic bacteria as strains, R. rubrum KS-301 was turned out a better strain. And result of experiment in which glucose and sodium lactate, components of wastewater, were used limiting substrates, showed that the productivity of hydrogen was indifferent with the kind of substrates. In batch experiments using free cells and immobilized whole cells, the decrease in hydrogen productivity was observed in the latter case. From the results of these experiments, specific growth rate of cells, specific utilization rate of glucose, and specific production rate of hydrogen were calculated. And each rate was expressed in the form of Monod equation of which parameters were estimated. Also the optimum condition of hydrogen production for free cells was $30^{\circ}C$, pH 7, and 12,000 Lux, and the optimum immobilized condition was as follows: initial immobilized cell concentration 1.0g/L, sodium alginate concentration 2% and light intensity 12,000 Lux.

  • PDF

Adaptive Control of Denitrification by the Extended Kalman Filter in a Sequencing Batch Reactor (확장형칼만필터에 의한 연속회분식반응조의 탈질 적응제어)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.829-836
    • /
    • 2006
  • The reaction rate of denitrification is primarily affected by the utilization of organics that are usually limited in the anoxic period in a sequencing batch reactor. It is necessary to add an extemal carbon source for sufficient denitrification. An adaptive model of state-space based on the extended Kalman filter is applied to manipulate the dosage rate of extemal carbon automatically. Control strategies for denitrification have been studied to improve control performance through simulations. The normal control strategy of the constant set-point results in the overdosage of external carbon and deterioration of water quality. To prevent the overdosage of external carbon, improved control strategies such as the constrained control action, variable set-point, and variable set-point after dissolved oxygen depletion are required. More stable control is obtained through the application of the variable set-point after dissolved oxygen depletion. The converging value of the estimated denitrification coefficient reflects conditions in the reactor.

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF