• Title/Summary/Keyword: Wastewater Utilization

Search Result 142, Processing Time 0.023 seconds

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF

Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design (빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항)

  • Mun, Jungsoo;Yoo, Hyoungkeun;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

Future green seawater desalination technologies (미래 그린 해수담수화 기술)

  • Kim, Jungbin;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

Treatment of natural rubber wastewater by membrane technologies for water reuse

  • Jiang, Shi-Kuan;Zhang, Gui-Mei;Yan, Li;Wu, Ying
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • A series of laboratory scale experiments were performed to investigate the feasibility of membrane separation technology for natural rubber (NR) wastewater treatment and reuse. Three types of spiral wound membranes were employed in the cross-flow experiments. The NR wastewater pretreated by sand filtration and cartridge filtration was forced to pass through the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes successively. The UF retentate, which containing abundant proteins, can be used to produce fertilizer, while the NF retentate is rich in quebrachitol and can be used to extract quebrachitol. The permeate produced by the RO module was reused in the NR processing. Furthermore, about 0.1wt% quebrachitol was extracted from the NR wastewater. Besides, the effluent quality treated by the membrane processes was much better than that of the biological treatment. Especially for total dissolved solids (TDS) and total phosphorus (T-P), the removal efficiency improved 53.11% and 49.83% respectively. In addition, the removal efficiencies of biological oxygen demand (BOD) and chemical oxygen demand (COD) exceeded 99%. The total nitrogen (T-N) and ammonia nitrogen (NH4-N) had approximately similar removal efficiency (93%). It was also found that there was a significant decrease in the T-P concentration in the effluent, the T-P was reduced from 200 mg/L to 0.34 mg/L. Generally, it was considered to be a challenging problem to solve for the biological processes. In brief, highly resource utilization and zero discharge was obtained by membrane separation system in the NR wastewater treatment.

Survey on water utilization status and saving mind for water demand management (물 수요관리를 위한 물 사용실태 및 물 절약 설문조사)

  • Lim, Bongsu;Kwon, Jeongin;Chu, Shaoxiong;Lee, Beumhee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The results of the survey on water utilization status, the wasted water factor, the awareness, and the education and promotional activities of water saving in Daejeon City are as follows: The percentage of using tap valve with a closure was 66% when showering. 74% of water was used with closing the tap valve when washing faces with no water needed, it was still considered that there existed a wasting water. The most wasting reasons of water were found to be shower, bath, and laundry in order. In the awareness of practicing tap water saving, 9.1% of respondents acted actively, 53.4% of them were trying to practice it, and more than 63% had a positive awareness. In the contents of practicing saving water, locking water when soaping while showering, non-laundry of small quantity, and using cups when brushing teeth were top priorities. About 50% of the reasons for saving water was to practice purely saving water, when saving for economic help was excluded. The level of water saving awareness was not high when considering that the ratio of usage without water saving equipment and installation, and using method was relatively high when moving in. In order to make usage of water saving equipment more common, it was deemed necessary to provide information on the purchase of water saving equipment and to promote and educate the efficiency of saving of related products. More than about 90% of the respondents responded that water saving education or promotional activities had an effect of improving water saving awareness. The most effective method of education and promotional activities was found to be 40.4% by mass media activities, and 21.7% by promotions through mobile devices.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Recycling of Waste Egg Shells for Treatment of Laboratory Wastewater containing Heavy Metals (중금속 함유 실험실 폐수처리를 위한 폐달걀껍질의 재활용)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Seong, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 1999
  • The purposes of this research were to evaluate the character of laboratory wastewater, and to examine the utilization of waste egg shells for neutralization and removal of heavy metals. Waste egg shells are excellent at neutralizing acidic wastewater, because they have alkaline minerals such as calcium. It must be seemed that removal rate of heavy metals were very influenced by adsobent dosage and adsorbate concentrations, because waste egg shells acted as precipitation and adsorption. If we reflected the adsorption capacity(k) and adsorption(1/n) of Freundlich isotherm, we couldn't consider waste egg shells as a good adsorbent. In view of these results, it showed that wastes containing the similar compositions as waste egg shells could utilize the neutralization, precipitation and adsorption of heavy metals in laboratory wastewater.

  • PDF

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

Experimental detemination of Half-Saturation Coefficient for Nitrifying Bacteria by Infinite Dilution Method (무한희석법(無限稀釋法)을 이용한 질산화(窒酸化) 미생물(微生物) 반포화계수(半飽和係數) 결정(決定)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Byong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • To remove nitrogen from wastewater, ammonia nitrogen has to be oxidized to nitrate nitrogen before denitrification reaction which converts nitrate nitrogen to nitrogen gas. In order to understand nitrification, several mathematical models had been proposed and Monod type model has been accepted internationally. Since Monod type model consists of maximum substrate utilization rate, substrate concentration and half-saturation coefficient, these values have to be addressed before using Monod type model. Several experimental procedures to determine half-saturation coefficient have been developed, however, Infinite dilution method was known to be time saving procedure. In this study, the mathematical equations and experimantal procedures for Infinite dilution method are presented and this method is used to determine half-Saturation coefficient for nitrifying bacteria. As results, Infinite dilution method is proved that this coefficient can be determined within 8 hours and the values of half-saturation coefficient has a range of 0.728 and $0.455gNH_4{^+}-N/m^3$ and the average has $0.580gNH_4{^+}-N/m^3$ through 5 sets of experiments.

  • PDF