• Title/Summary/Keyword: Wastewater Treatment Process

Search Result 1,434, Processing Time 0.027 seconds

Detection of Equipment Faults at Sequencing Batch Reactor Using Dynamic Time Warping (동적시간와핑을 이용한 연속회분식 반응기의 장비고장 감지)

  • Kim, Yejin
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.525-534
    • /
    • 2016
  • The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Advanced Wastewater Treatment using Sludge Solubilization by the Cavitation and PGA addition (Cavitation에 의한 슬러지 가용화와 PGA를 이용한 하수고도처리에 관한 연구)

  • KIM, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.449-454
    • /
    • 2008
  • Some pretreatment methods have been proposed to enhance the biodegradability and to shorten the hydrolysis reaction time. By means of efficient pretreatment the suspended solids (SS) can be made of better accessible for the anaerobic bacteria. There are several ways how this can be accomplished, which include biological, mechanical, thermal, and chemical methods. For the sludge solubilization using the cavitation phenomenon, we have tried to develop a pretreatment process consisted of a reactor and pumps. The objectives of this study were to develop a advanced wastewater treatment consisted of IABR and the cavitation with PGA. The most effective removal for organic matter and nutrients were occured when both cavitation pretreatment and ${\gamma}$-PGA were applied at the IABR process. Only small portion of ${\gamma}$-PGA at a rate of 1.38mg/L, was enough to improve sedimentation ability, SS removal efficiencies, and sludge volume reduction. After the sludge solubilization by the cavitation, SCOD increased to 193% and SS decreased to 36%. The removal ratio of BOD was 94.5%, T-N removal ratio was 85.5% and T-P removal ratio was 84.9%. The combination process of the IABR with the cavitation and PGA addition seems to be very effective alternative wastewater treatment process.

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

Astudy on Treatment of Livestock Wastewater using Coagulation and Fenton Oxidation Process (응집 및 fenton 산화공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Ryou, Jae-Woong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.610-614
    • /
    • 2004
  • The objective of this study was to remove organics and color in livestock wastewater using coagulation and Fenton oxidation process. After coagulation process as $1^{st}$ treatment, organics in $1^{st}$ treatment water were removed by using OH radical produced in Fenton oxidation process. Removal efficiencies of $COD_{Mn}$ and color were 87.2% and 95.7% separately. At that time, the ratio of $Fe^{2+}/H_2O_2$ was 0.8~1.0, and range of reaction pH was effective at the pH of 3.5~3.8. The Reaction time of 120min more than 60min or 90min was sufficient in Fenton process. Removal efficiency of organics was higher two- or multi-stage treatment than one-stage treatment.

Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant (파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가)

  • Jang, Yeoju;Jung, Jinhong;Lim, Hyunman;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

Evaluation on the Possibility of a Retrofitting Treatment Using Moving Media of Existing Wastewater Treatment (유동상 Media를 이용한 기존하수처리장의 Retrofitting 가능성 평가)

  • Ko, Tae-Ho;Park, Woon-Ji;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, as MBBR(Moving Bed Biofilm Reactor) process using waste tire media is suggested for retrofitting with advanced wastewater treatment and the removal property of organic matter and nutrient and the capacity of media are evaluated through long-term operation with pilot plant following seasons, the application capacity of retrofitting with MBBR process to a existing wastewater treatment is studied. As a result of the long-term operation of the process, it is proved that there is no loss and abrasion of media, and also that it is possible to secure the sufficient attached bio-mass. The values of organic matter and nutrient in effluent are suitable for the strict discharged water quality standards in every season including winter.

  • PDF

Treatment Study of Textile Wastewater by Fenton's Oxidation (펜톤 산화반응에 의한 염색폐수처리 연구)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.20-25
    • /
    • 2000
  • The wastewater treatment for the purpose of water-recycling was performed using Fenton's & ozone's methods. These methods were used to increase the treatment efficiency of textile wastewater and to search for the optimal operating conditions. The optimal conditions by Fenton process were determined so that input amounts of $FeSO_4{\cdot}7H_2O$ and $H_2O_2$ were $7.2mM/{\;}{\ell}$ and $49.0m/{\;}{\ell}$ respectively, treatment by ozone process had 92% removal efficiency at ozone concentration of 9.73g/min and $130mM/{\;}{\ell}$ of $H_2O_2$.

  • PDF

Development of Wastewater Treatment Process Simulators Based on Artificial Neural Network and Mass Balance Models (인공신경망 및 물질수지 모델을 활용한 하수처리 프로세스 시뮬레이터 구축)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.427-436
    • /
    • 2015
  • Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.