• Title/Summary/Keyword: Wastewater Biorefinery

Search Result 3, Processing Time 0.02 seconds

Integrated Applications of Microalgae to Wastewater Treatment and Biorefinery: Recent Advances and Opportunities

  • Nguyen, Van Tuyen;Limjuco, Lawrence A.;Lee, Kisay;Dang, Nhat Minh
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Microalgae is becoming a vital component for a circular economy and ultimately for sustainable development. Herein, recent developments in different outcomes of microalgae for wastewater treatment and biorefinery were reviewed. From its primary function as a third-generation resource of biofuel, the usage of microalgae has been diversified as an integral element for the CO2 sequestration and production of economically valuable products (e.g., pharmaceuticals, animal feeds, biofertilizer, biochar, etc.). Principles and recent challenges for each microalgae application were presented to suggest a motivation for future research and the direction of development. The integration of microalgae within the concept of the circular economy was also discussed with various routes of microalgae-based biorefinery.

Molecular Ecological Characterization of Wastewater Bacterial Communities in Response to Algal Growth (조류성장에 따른 하수 박테리아 군집 변화에 관한 분자생태학적 연구)

  • Lee, Ju-Youn;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.847-854
    • /
    • 2011
  • To deal with issues from global climate changes, renewable bioenergy has become important. Algae have been regarded as a good resource for biorefinery and bioenergy, and also have potential capability to remove nutrient and non-decompositional pollutants for wastewater advanced treatment. Although algal-bacterial ecological interaction would be a crucially important factor in using algae for wastewater advanced treatment and resource recovery from wastewater, very little is known about ecological interaction between algae and bacteria in a real wastewater environment. In this study, under a real municipal wastewater condition, we characterized wastewater pollutant treatability and bacterial communities in response to growth of Ankistrodesmus gracilis SAG278-2, which can grow in wastewater and has a high lipid contents. The growth of algal population using the wastewater was inhibited by increase in wastewater bacteria while bacterial survival and cellular decay rate were not influenced by the algal growth. Removals of recalcitrant organic matters and total nitrogen were improved in the presence of algal growth. According to T-RFLP and statistical analysis, algal growth affected time-course changes in bacterial community structures. The following 16S rRNA gene amplicon, cloning results showed that the algal growth changes in bacterial community structure, and that bacterial populations belonging to Sediminibacterium, Sphingobacterium, Mucilaginibacter genera were identified as cooperative with the algal growth in the wastewater.

Preparation of Anion Exchange Membranes for Electrodialysis by Impregnating Porous Polyethylene Films with Crosslinked Poly(vinylbenzyl ammonium chloride)s (다공성 폴리에틸렌 필름에 가교된 poly(vinylbenzyl ammonium chloride)를 충진한 전기투석용 음이온 교환 복합막의 제조)

  • Kim, Jeong-Hoon;Lee, Jung-Soo;Yoo, Min-Chul;Chang, Bong-Jun;Kang, Ho;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.138-145
    • /
    • 2008
  • A series of anion exchange composite membranes were prepared and characterized for electro-dialysis process used in the removal of toxic anion and cation polutants in groundwater or wastewater. The membranes were prepared as follows; first, porous poly(ethylene) (PE) substrates were fully impregnated with monomer mixtures with various ratio of vinylbenzylchloride (VBC), divinylbenzene (DVB) and ${\alpha},\;{\alpha}$-azobis(isobutyronitrile) (AIBN). Second, they were thermally polymerized to yield crosslinked poly(VBC-DVB)/PE composite membranes. Finally, the membranes were treated in trimethylamine (TMA)/acetone to give $-N^+(CH_3)_3$-containing poly(VBC-DVB)/PE membranes. The basic membrane properties such as ion exchange capacity (IEC), electric resistance and water content of the resulting membranes were measured as a function of VBC/DVB and TMA/Acetone content. As a result, the composite membranes showed lower electric resistance, lower water content and higher IEC than commercial anion exchange membranes (AMX, Astom) due to thin PE substrates, indicating that the composite membranes could be successfully applied to the electrodialysis for water treatment.