• Title/Summary/Keyword: Wastes characteristics

Search Result 458, Processing Time 0.022 seconds

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • Park, Jin Sik;An, Cheol U;Mun, Chu Yeon
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.23-23
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The results are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 3994(kudzu), 37%( sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/n ratio 25 indicated 68'C(kudzu), 70'C (sawdust).Optimum condition of consists of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation of gravitationally, dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively Major biological reaction in the aerobic fermentation feed production occurred during 12~14hrs

Characteristic Evaluation of RDF for the Combined Drying Produced by Weight Mixing Ratio Use Chemical Wastewater Sludge and Anthracite Coal (화학폐수슬러지와 무연탄을 이용한 복합건조공정의 조사시간에 따른 고형연료의 특성 평가)

  • Lee, Seung-Chul;Jung, Jin-Hee;Lee, Jun-Hee
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • The objective of this study was to evaluate the microwave drying characteristics of mixtures of chemical wastewater sludge (70~90%) and anthracite coal (10~30%) with respect to physical and economic factors such as mass, volume reduction, moisture content, drying rate and heating value when the wastes were dried at different weight mixing ratio and for different microwave irradiation time. The drying process were carried out in a microwave oven, the combined drying process with a 2,450 MHz frequency and 1 kW of power. Maximum dry rates per unit area on the microwave drying of mixtures with chemical wastewater sludge and anthracite coal were $35.5kg\;H_2O/m^2{\cdot}hr$ for Cs90-Ac10; $40.1kg\;H_2O/m^2{\cdot}hr$ for Cs80-Ac20 and $35.0kg\;H_2O/m^2{\cdot}hr$ for Cs70-Ac30. The result clearly indicated that moisture can be effectively and inexpensively removed from the wastes through use of the microwave drying process.

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Overview and Future Concerns for Recycling Glass Wastes (폐(廢)스마트 유리제품(琉璃製品) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Hong, Hyun Seon;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Glass materials possess unique functional characteristics of ceramics different from those of metals, which has marked glass as one of the mainstay materials in the history of mankind. Nowadays, industrial sophistication necessitates comparable "smart" attributes of glass materials as a significantly advanced form of sophistication. Smart glasses are increasingly applied in many state-of-the-art digital appliances such as displays and semiconductors and waste is also expected to accumulate therefrom in the near future: More than 60,000 tons of smart glass wastes were reported as of 2012, for example. In the present paper, current status of domestic Korean smart glass industry and related recycling enterprise have been comprehensively investigated. Finally, Korean domestic smart glass recycling technology and its future prospect are also briefly presented.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

A Study on Characteristics of Incinerator for Medical Wastes (감염성 폐기물 처리용 소각로 특성에 대한 연구)

  • 채호준;조석연;박용한;장필수
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.471-472
    • /
    • 2003
  • 국민의 보건의식이 높아짐에 따라서, 병원에서 배출되는 감염성 폐기물의 안정적 처리에 대한 요구가 높아지고 있다. 감염성 폐기물 처리방법으로는 가압멸균과 산화소각 및 건류소각이 있는데, 본 연구 목적은 100%멸균이 보장되는 중형 산화소각을 설계하고 이의 운영특성을 파악하는데 있다. 감염성 폐기물은 일정규격의 상자에 담아서 배출되며, 저온에서 이송과 저장이 이루어지며, 소각로 투입시에도 상자를 파손하지 않고 투입되어야 하는 등의 엄격한 규정에 따라서 소각하여야 한다. 본 연구는 이러한 감염성 폐기물처리 법규 및 감염성 폐기물의 연소 특성을 파악하여 소각로 설계의 기본자료로 활용하였다. (중략)

  • PDF

Metabolism and Fermentation of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사와 발효)

  • 이상엽
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The acetone-butanol fermentation by C. acetobutylicum has gained increasing attention for the following reasons. First, the finite supply of petrochemical resources, combined with increasing concern over global environmental effects and the unstable nature of the price of petroleum has renewed interest in the development of fermentation technology that allows utilzation of biomass wastes for the production of alcohol. Second, it serves as excellent model system for understading the regulation and molecular biology of tightly regulated complex primary metabolism, and for applications of metabolic engineering. In this review various aspects of acetone-butanol fermentation by C. acetobutylicm including strain and fermentation characteristics, enzyme regulation, and solvent formation mechanism, and product recovery and summarized.

  • PDF

Evaluation of Grade-Classification of Wood Waste in Korea by Characteristic Analysis (국내 폐목재 특성분석을 통한 등급화 평가)

  • Kim, Joung-Dae;Park, Joon-Seok;Do, In-Hwan;Hong, Soo-Youl;Oh, Gil-Jong;Chung, David;Yoon, Jung-In;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1102-1110
    • /
    • 2008
  • This research was performed to analyze the characteristics of wood wastes from origin and to suggest grade-classification for them. Korean proximate analysis was conducted, and heating value, heavy metals and Cl concentrations were analyzed for gradeclassification. Wood wastes were sampled from forest, living, construction and demolition, and industrial areas with origin. Moisture content of most wood wastes was ranged in 5$\sim$10%. VS (volatile solids) and ash contents of them showed > 95% and < 5%, respectively. Most wood wastes except wood for growing mushroom permitted the standard (low heating value $\geq$ 3,500 kcal/kg) for refusederived fuel. CCA (Cr, Cu, As) concentration of wood wastes used in bench, wasted fishing boat, and railroad crosstie was higher than that of the other ones. Cl content showed approximately 1.3% in wood box for fish and $\leq$ 0.2% in the other wood wastes. Cl content of all wood wasted used in this research permitted the standard (Cl $\leq$ 0.2%, dry weight basis) for refuse-derived fuel. If the wood wastes were classified in 3-grade, plywoods would be in 2nd grade, and MDF (medium density fiber), wooden bench, painted electric wire drum, wasted fishing boat, and railroad crosstie be in 3rd grade.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.