• 제목/요약/키워드: Wasted Heat Recovery

검색결과 17건 처리시간 0.021초

30,000CMH급 폐열회수열교환기 겨울철 성능실험 결과 (Experiment Results of 30,000 CMH class Heat Exchangers for Wasted Heat Recovery in Winter)

  • 하병용;임홍석;김동규;금종수;정석권;정용현;김근오;명진필
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2009
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology.

  • PDF

폐열회수 환기장치의 열교환 효율 개선을 위한 전산수치해석 (Numerical Analysis of Wasted Heat Recovery Ventilator for Improving the Heat Exchange Efficiency)

  • 김현일;김재성;박철우;박경서
    • 한국CDE학회논문집
    • /
    • 제17권1호
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, we performed numerical analysis to improve the heat exchange efficiency of wasted heat recovery ventilator which has a delivery and a exhaustion fan. One of the most important design factors that affect the efficiency of heat exchange is uniform counter-flow between inbound and outbound air flows. We had simulated several types of porous plates which were installed at air intake area. With plate having 45 degrees of installation angle and 15 mm diameter holes which are uniformly arranged, we can generate a uniform air flows at the area of porous media where inbound and outbound air flows are cross over. In addition, we installed a duct to reduce vortex flows at the outlet and to discharge exhaust airs rapidly. By using the proposed numerical assessment, we expect the improvement of the heat exchange efficiency of ventilator.

요철형상의 CFD 해석을 통한 대용량 로타형 폐열회수열교환기 성능에 관한 연구 (Research on Performance of Large Rotor-type Heat Recovery Exchanger using CFD Analysis on Surface Corrugation)

  • 김동규;하병용;김근오;금종수;정석권
    • 설비공학논문집
    • /
    • 제24권12호
    • /
    • pp.875-880
    • /
    • 2012
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. To develop large volume waste heat recovery heat exchanger, rotor type heat exchanger was simulated for the surface corrugation. Based on the simulation results produced $30,000m^3/h$ grade waste heat recovery, heat exchanger was performed for the actual experiment. In addition, performance tests exceed the capacity of a large waste heat recovery heat exchanger performance test methods proposed.

Vessel Tank로 유입되는 폐열회수 처리에 관한 연구

  • 구재량
    • 열병합발전
    • /
    • 통권66호
    • /
    • pp.4-7
    • /
    • 2008
  • When a Combined cycle power plant was started, Steam turbine wasted pure water too much during prewarming of turbine. Wasted pure water gathered in vessel tank and evaporated immediately, then emitted atmosphere. We investigate method to recover the heat in vessel tank. We installed a heat exchanger in vessel tank. In this study, the designing and manufacturing procedures of the heat exchanger was presented. Also, the performance results was showed briefly.

  • PDF

열회수장치에 의한 열교환 성능 분석(농업시설) (Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct)

  • 서원명;강종국;윤용철;김정섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.333-339
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas funnel connected to combustion chamber of greenhouse heating system. The experiment heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas funnel, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amount by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air pipes and exhaust air passages crossing the pipes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through funnels.

  • PDF

배기열회수 알루미늄 열교환기의 공조시스템 적용에 관한 연구 (The Study on the Application of Heat Recovery Aluminium Heat Exchanger in HVAC System)

  • 박용효;김동규;김근오;정용환;금종수;정석권
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1272-1276
    • /
    • 2009
  • The purpose of this study is to introduce wasted heat recovery heat exchanger for different kind of material in HVAC systems in field. For the purpose of estimating the large volume rotary heat exchanger and cross flow plate heat exchanger in heat recovery ventilator.

  • PDF

배기열 회수장치 적용에 따른 SI 엔진의 웜업 성능에 미치는 영향 (Effects of Warm-up Performance on SI Engine with Exhaust Heat Recovery System)

  • 박경석;서호철;박선홍;김인태;장성욱
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.53-60
    • /
    • 2011
  • The effect of exhaust heat recovery system can be evaluated by two well known method. First method is to measure the time duration from engine start under cold coolant temperature till coolant get warmed. By this methodology coolant warming duration can be index of warm-up effect. Second method is to analyze heat balance of the engine during warm-up phase under steady engine operation so that wasted energy by losses such as cooling and exhaust can be index of warm-up effect. This study focused on evaluation of warming-up effect by both methodology above mentioned using 2L SI engine under from idle to 2000rpm steady condition. Results, idle operation showed low heat recovery efficiency but under higher engine speed condition, remarkable heat recovery efficiency improvement was observed. In 2000rpm steady condition, warm-up duration of engine is decreased by exhaust heat recovery system.

열회수장치에 의한 열회수성능 분석 (Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct)

  • 서원명;윤용철;강종국
    • 생물환경조절학회지
    • /
    • 제9권4호
    • /
    • pp.212-222
    • /
    • 2000
  • 본 연구는 온실 난방시스템의 연소 체임버에 부착된 연소가스 배출연통에 열회수기를 장착하여 배출가스로부터 열을 회수하는 열회수장치의 성능에 대해 실험·분석하였다. 열회수시스템은 LPG 연소 체임버와 두 개의 열회수기로 구성되어있다. 열회수기-A는 배기가스 연통에 직접 연결되어 있으며 열회수기-B는 열회수기-A에 직렬로 연결되어 있다. 회수되는 열량은 가스의 질량흐름율과 두 측점간의 엔탈피 차이로서 산정하였으며 5가지의 송풍전압별로 각 열회수기의 성능을 검토하였다. 각 열회수기의 공기튜브 다발에 공급된 공기와 튜브 다발에 가로질로 통과하는 연소가스간의 열교환, 열회수기 유·출입부간의 압력감소, 열회수기의 총열회수성능 등으로 온실의 연통을 통해 낭비되는 열을 회수하여 연료 절감 효과를 얻을 수 있는 최적의 열회수장치 설계용 기초자료 확보에 본 연구의 목적이 있다.

  • PDF

저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구 (Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat)

  • 조수용;조종현
    • 신재생에너지
    • /
    • 제10권4호
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

냉각수 활용 히트펌프 설치 위치에 따른 광교 열병합발전소의 성능 특성 예측 (Prediction of Performance Characteristics with Various Location of Waste Heat Recovery Heat Pump in a Gwang-gyo Cogeneration Plant)

  • 박흔동;허기무;윤성훈;문윤재;유호선;이재헌
    • 플랜트 저널
    • /
    • 제10권2호
    • /
    • pp.28-37
    • /
    • 2014
  • 히트펌프는 연소를 동반하지 않기 때문에 화석연료의 연소과정에서 발생하는 이산화탄소($CO_2$)의 배출을 억제함과 동시에 산업체 폐수, 배증기, 냉각수, 지하수, 하수 등 이미 존재하는 다양한 열을 회수할 수 있다는 장점이 있다. 한국지역 난방공사에는 파주, 고양삼송, 광교 열병합발전소에 폐열회수 조건 및 경제성 등을 고려하여 기기 냉각수 폐열을 열원으로 활용하는 히트펌프를 설치하여 운영하고 있다. 본 논문은 최근 건설된 150 MW급 광교 열병합발전소를 대상으로 상용 프로그램인 THERMOFLEX를 활용하여 기기 냉각수 폐열을 이용한 5 Gcal/h 용량의 히트펌프 설치 위치가 발전소 성능에 미치는 영향에 대해 연구하였다. 총 3가지 경우에 대해 히트펌프의 위치에 따른 성능의 영향을 살펴보았는데, 그 결과 지역 난방수 가열기 전단에 히트펌프를 설치한 경우가 전기출력 감소에도 불구하고 열출력 증가량이 커서 발전소 총효율에서 가장 유리한 것으로 확인되었다.

  • PDF