• 제목/요약/키워드: Waste-water treatment

검색결과 862건 처리시간 0.026초

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

오존을 이용한 오 .폐수처리에 관한 연구 (A Study on the Ozonation of Organic Materials in Sewage and Waste Water)

  • 황상용;이규성;김병석
    • 환경위생공학
    • /
    • 제6권1호
    • /
    • pp.103-108
    • /
    • 1991
  • Visibility studies are conducted in oxidizing organic compounds with ozone to investigate the oxidation in the waste and sewage water. While the ozone has been used as one of the major oxidation of the waste and sewage water, it is not effective to distroy the polluted organic compounds with the practical concentration in waste water treatment. The result are shown follows ; 1. Upon oxidizing organic compound with ozone, the former is much oxidized under three meters and the latter under the ABS waste water. 2. In case of being oxidized organics waste water with ozone codis, much removed under medicine and chemical waste water than anothers of primary treatment process. 3. The final treated waste water of oxidizing organics is higher than that of filtered water or sedimented water. Specially in organics waste water the colority after oxidizing decrease from 95% to 99.9% this suggests that any organic compounds produced during ozonation night be dissdved in the final treated waste water.

  • PDF

매립지내 환경에너지단지의 무방류 시스템 구축방안 (Construction Method of Zero Discharge System for Environmental Energy Complex in Landfill)

  • 천승규
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.581-590
    • /
    • 2013
  • A research was performed for zero discharge system of waste water which is produced from energy recovery process of waste and biomass. Leachate and all kinds of waste water should be separated and integrated into three categories in addition to converting existing leachate treatment facility into waste water treatment facility as well as introducing a management system of reverse osmosis membrane facility and bioreactor landfill. Following these conditions to better water treatment process, it was likely to produce over 3,000 tons of low-grade recycling water and 2,000 tons of high-grade recycling water per day when zero discharge system of waste water is applied starting from 2016. Economical efficiency was also surveyed in total treatment fee. Present system costs 18,129 million won per year, and suggested zero discharge system would cost 15,789 million won per year.

Memtrane SEparation of Activated Sludge for Waste Water Treatment and Water Recycle

  • Miyano, O-Tadadki;Yohgi Inoue;Toyozo Hamada;Shuji Nakatsuka
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 Energy Saving Membrane Separtion Systems 에너지 절약형 막분리 시스템
    • /
    • pp.39-39
    • /
    • 1999
  • Membrane separation technology has become a more attractive technology on waste water treatment and water recycle in recent years. On this application, membrane does not take main part of treatment, such as decomposition or handling of organic matter in the waste water, but it is very important supporting method in the total system. Activated sludge is most popular method as main part. In the system , membrane works as a separator to obtain clear water after biological treatment, by which the permeate could be released, recycled or applied to further additional treatment, instead of conventional sedimentation, coagulation and sand filtration. We would like to introduce our system cases for waste water treatment and water recycle, in which membrane separation technology works. In most of cases, membranes are applied to solid- liquid separation of activated sludge. Our experiences will be introduced as following items.

  • PDF

생활 오배수를 이용한 중수처리 공급장치의 기술성 고찰 (Technical Considerations of Recycling Water Treatment/Supply Apparatus using Living Waste Water)

  • 조정식;이희완;김홍민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.493-498
    • /
    • 2008
  • The several water resources are showed recently the various pollution types due to the industrialization and the disarranged district development. The living waste water, plant waste water and so are contaminated continuously and the recycling water is concerned highly to save the cost and to improve the environment as the general people. The dust and the heavy metal in the air and the acid rain are contaminating the river water and the underground water. The clean environment is on the rise to the general people and is to be the social problems. There is going to complement and repair the water supplying and fire extinguishing pipeline to save the construction cost and improve the environment in the construction facilities parts. Therefore, in this paper the recycling water treatment/supply apparatus using the living waste water is considerated technically and is raised on the practical uses.

  • PDF

막여과 정수장 배출수처리시설의 효율적인 운영방안 (Strategy for efficient operation on the backwash waste treatment in membrane filtration water treatment plant)

  • 정원채;유영범;이선주;문용택
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.479-489
    • /
    • 2014
  • Membrane backwashing waste shows seasonally different characteristics and it has bad settleability differently from general backwashing waste in water treatment plant. When chemicals was injected to membrane backwashing waste, the settleability was better than chemicals was not injected. However, when settled lower sludge was not discharged, flowing sludge continuously was concentrated over a certain surface and floatation penomena occurred according to flowing velocity. When the lower sludge was discharged continuously in the thickener to prevent floatation penomena of turbidity materials, the depth of sludge surface was the least and the settleability increased.

반도체 산업폐수의 재이용 기술에 관한 연구 (A Study on the Waste Water Recycling Technology for Semiconductor Industry)

  • 지은상;김재우;신대윤
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.137-142
    • /
    • 1999
  • Current semiconductor industry factories are relying on the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water shortage. As a result in order to solve those waste and industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology with physical, chemical and biological treatment methods as a mixed stream basis for treating of semiconductor waste stream into clean technology with pollution prevention technology as a waste segregation basis, we can bet 20 to 30% investment reduction as compared with end-of-pipe treatment technology.The results for water quality analysis were as follows : 1. Water quality analysis of the before treatment : pH : 9~10.5, Conductivity : $300~7,000{\mu}s/cm$, TDS : more then $3,000mg/{\ell}$, COD : $200~250mg/{\ell}$, SS : $500~600mg/{\ell}$, n-H : $8.3mg/{\ell}$ 2. Water quality analysis of the after treatment : pH : 6.5~7.5, Conductivity : 0.059, TDS : $40{\mu}s/cm$, COD : $20mg/{\ell}$, SS : $5mg/{\ell}$ n-H : $0.6mg/{\ell}$

  • PDF

Reclamation of Desert with Regular Application of Waste Water

  • Rajan Raj Pandey
    • Journal of Information Technology Applications and Management
    • /
    • 제31권4호
    • /
    • pp.15-31
    • /
    • 2024
  • Deserts around the world mostly do not have plants and are ever- expanding their area each year. There is shortage of food and prevalent hunger around the world mostly in the African countries that have desert. The waste water is not properly managed in those places and it causes disease outbreaks. So, the problems of desertification, waste water management and hunger have to be addressed by the world community. This thesis work tries to explore a possibility of reclamation of deserts with regular application of waste water. The results obtained from a four months long test are very encouraging and it can be easily concluded that the deserts can be reclaimed by application of waste water and it will relieve the desert community from the burden of costly treatment of waste water as well. In turn, they will, to some extent, get rid of water borne diseases and the reclaimed land could be used in future to produce more food to feed the hungry community- positively impacting directly to food security of the focused community.

Membrane Technology for Waste Water Recovery

  • Okazaki, Minoru
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 추계 총회 및 학술발표회
    • /
    • pp.22-33
    • /
    • 1996
  • With the experience of the 1994 drought, and the shortage of water resources in Japan, it has been re-informed upon us ensure and maintain the stability of water resources. Accordingly, with each plant, a serious appraisal has begun looking at the re-use of waste water. Membrane technology is an important process for waste water recovery. Effluent kom waste water facilities changes the quality of water significantly. The conventional pre-treatment of RO is hard to supply good quality feed water to RO in the waste water recovery system. The microfiltration system as a pre-treatment of RO in the paper overcomes the fouling with the air backwash and is operated in direct flow mode at a low pressure producing a high flux. The paper will focus the waste water recovery using membrane technology and many examples will be given.

  • PDF

칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가 (Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio)

  • 전경호;최동윤;송준익;박규현;곽정훈;김재환;강희설
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.