• Title/Summary/Keyword: Waste-to-Energy

Search Result 2,705, Processing Time 0.035 seconds

Development of ACBIO: A Biosphere Template Using AMBER for a Potential Radioactive Waste Repository (AMBER를 이용한 방사성폐기물처분장 생태계 평가 템플릿 ACBIO 개발)

  • Lee Youn-Myoung;Hwang Yongsoo;Kang Chul-Hyung;Hahn Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.213-229
    • /
    • 2005
  • Nuclides in radioactive wastes are assumed to be transported in the geosphere by groundwater and probably discharged into the biosphere. Quantitative evaluation of doses to human beings due to nuclide transport in the geosphere and through the various pathways in the biosphere is the final step of safety assessment of the radioactive waste repository. To calculate the flux to dose conversion factors (DCFs) for nuclides appearing at GBIs with their decay chains, a template ACBIO which is an AMBER case file based on mathematical model for the mass transfer coefficients between the compartments has been developed considering material balance among the compartments in biosphere and then implementing to AMBER, a general and flexible software tool that allows to build dynamic compartment models. An illustrative calculation with ACBIO is shown.

  • PDF

Chemical Treatment of Low-level Radioactive Liquid Waste (I)

  • Lee, Sang-Hoon;Choe, Jong-In;Kim, Yong-Eak
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 1976
  • This experiment has been carried out for the removal of long-lived radioactive-nuclides (Sr-90, Ru-106, Cs-137 and Ce-144) contained in the low-level radioactive effluents from the spent fuel reprocessing plant and nuclear power plant, in order to determine the decontaminability of various chemical coagulants and domestic clay mineral (montmorillonite). Phosphate process showed prominent efficiency for the removal of Ce-144, and lime-soda process did good removal efficiency for Sr-90. About Cs-137 copper-ferrocyanide process is much desirable. In phosphate or lime-soda process, most favorable removal efficiency was obtained at more than pH 11. The montmorillonite treated with sodium chloride showed a considerable improvement in the removal of the radioactive-nuclides. By a combined chemicals-montmorillionite process, the radioactive-nuclides could be more effectively removed than by the only chemicals process.

  • PDF

A Teleoperated Cleaning Robot for a High Radioactive Environment

  • Kim, Ki-Ho;Park, Jang-Jin;Yang, Myung-Seung;Oh, Chae-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.849-854
    • /
    • 2003
  • The Korea Atomic Energy Research Institute has developed a teleoperated cleaning robot for use in the radioactive zone of the isolation room of the Irradiated Material Examination Facility where direct human access to the interior is strictly limited. The teleoperated cleaning robot that was designed to completely eliminate human interaction with the hazardous radioactive contaminants has five remotely replaceable submodules - a mobile module for navigation, a cleaning module for dislodging and sucking contaminated waste, a sensing module for obstacle avoidance, a collection module for storing the acquired waste, and a cover module for protecting the collection module. This cleaning robot is capable of cleaning the contaminated floor surface of the isolation room and collecting loose dry spent nuclear fuel debris and other radioactive waste fixed or scattered on the floor surface. The developed cleaning robot is operated either by a manual control or by autonomous control in conjunction with a graphical simulator, by which the human operator can monitor and intervene the robot performing cleanup tasks in the isolation room. In this paper, we present the mechanical and environmental design considerations and development of the teleoperated cleaning robot for radioactive isolation room use. We also demonstrate its mock-up performance test results from the viewpoint of a remote cleanup operation and remote maintenance.

  • PDF

Worldwide Trend and Korean Recent Status in the Supply-Demand for Resources -The Current Situation of Recycling Technology for Waste Resources in Korea(1)- (자원수급(資源需給)의 세계적(世界的)인 추세(趨勢)와 우리나라의 동향(動向) -국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(1)-)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.3-19
    • /
    • 2006
  • Sustainable supply of minerals and energy is global problem. Metals and energy consumption in the world has increased with economic growth. Currently more than 40 metals are systematically extracted and used in many different fields in civilized society. Recycling and reuse have become very important because recycling contributes to supplying the materials and protecting the environment of society. It is not realistic that all waste materials are capable of being recycled, because recycling metals have fundamentally been competing with primary production. In this point of view, prior to discuss on current recycling technology of waste resources in Korea, world wide trend and Korean recent activity in the supply-demand far minerals and energy resources are reviewed.

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Rock wool wastes as a supplementary cementitious material replacement in cement-based composites

  • Lin, Wei-Ting;Cheng, An;Huang, Ran;Wu, Yuan-Chieh;Han, Ta-Yuan
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.93-104
    • /
    • 2013
  • The use of rock wool waste, an industrial by-product, in cement-based composites has positive effects on the environment because it reduces the problems associated rock wool disposal. The experiments in this study tested cement-based composites using various rock wool waste contents (10, 20, 30 and 40% by weight of cement) as a partial replacement for Portland cement in mortars. The pozzolanic strength activity test, flow test, compressive strength test, dry shrinkage test, absorption test, initial surface absorption test and scanning electron microscope observations were conducted to evaluate the properties of cement-based composites. Test results demonstrate that the pozzolanic strength activity index for rock wool waste specimens is 103% after 91 days. The inclusion of rock wool waste in cement-based composites decreases its dry shrinkage and initial surface absorption, and increases its compressive strength. These improved properties are the result of the dense structure achieved by the filling effect and pozzolanic reactions of the rock wool waste. The addition of 30% and 10% rock wool wastes to cement is the optimal amount based on the results of compressive strength and initial surface absorption for a w/cm of 0.35 and 0.55, respectively. Therefore, it is feasible to utilize rock wool waste as a partial replacement of cement in cement-based composites.

Migration of THO & Np in a Fractured Granite Core at Deep Underground Laboratory

  • PARK Chung-Kyun;CHO Won-Zin;HAHN Pil-Soo;KIENZLER B.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.255-263
    • /
    • 2005
  • Migration experiments of THO and 237Np have performed through a sampled granite core in Chemlab2 probe at the Aspo hard Rock laboratory. The elution curves of THO were analysed to determine hydraulic properties such as the extent of dispersion effect according to flow rates. The retardation phenomena of the solutes were observed and described with elution curves and migration plumes. After migration test, the rock core was opened, and the remaining radioactivities on the rock fracture surfaces were measured. The transport process was simulated with a two-dimensional channel model. The mass transport process was described with three types of basic processes ; advection, sorption and matrix diffusion. By the combination of these processes, effects of each process on transport were described in terms of elution curves and migration plumes. By comparing the simulation results to the experimental one, it was possible to analyse the retardation effect quantitatively.

  • PDF

Recovery of C-14 in the Cement Waste Form (농축폐액 시멘트 고화체로부터 C-14 회수 특성)

  • Ahn Hong-Joo;;Lee Jeong-Jin;Pyo Hyung-Yeal;Han Sun-Ho;Jee Kwang-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.284-289
    • /
    • 2005
  • According to the nuclear safety regulation policy including the administration of radionuclides in low level radwastes, the evaporator bottoms were mixed with cement to form a stable solidification for identifying the recovery possibility of the C-14. The chemical oxidation method was applied for the extraction of C-14 from the cement waste form. The emitting beta ray of the C-14 extracted from the radwastes was measured with the liquid scintillation counter and calculated by using the quenching correction curves. Only the beta emitting radioactive nuclides of the C-14 in the radwastes was showed the radioactivities with the range of $2.7E+00\;{\sim}\;3.07E+02$ Bq/g.

  • PDF

Utilization of Liquid Waste from Methane Fermentation as a Source of Organic Fertilizer -II. Effect of Liquid Waste on Chemical Components, Digestible Dry Matter and Net Energy of Pasture Mixtures (메탄발효폐액(醱酵廢液)의 비료화(肥料化)에 관(關)한 연구(硏究) -II. 폐액시용(廢液施用)이 목초(牧草)의 화학성분(化學成分), 가소화건물(可消化乾物) 및 Net Energy에 미치는 영향(影響))

  • Shin, Jae-Sung;Kim, Jeong-Gap;Lim, Dong-Kyu;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.147-151
    • /
    • 1987
  • This study was conducted to evaluate the effect of the liquid waste from methane fermentation on chemical components, digestible dry matter and net energy of pasture mixtures of orchard grass, tall fescue, Kentucky bluegrass and ladino clover. The total crude proteins and crude ashes increased with the application of liquid waste, but N-free extracts decreased somewhat and it didn't affect the content of crude fat and crude fiber. Amounts of neutral detergent fiber and acid detergent fiber increased with increasing application of liquid waste and the content of cellulose in cell-wall constituents decreased, but hemicellulose increased. The digestible dry matter was produced 405 kg/10a at optimum application of 42 MT/10a liquid waste compared to NPK check plot of 233 kg/10a. The starch value and net energy lactation were 291.3 KStE and 3450 MJ-NEL respectively indicating that the optimum application of liquid waste increased their values.

  • PDF