• Title/Summary/Keyword: Waste-to-Energy

Search Result 2,689, Processing Time 0.03 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

A comparison of the reproduction of two closely related species, tiger worm(Eisenia fetida) and red tiger worm(Eisenia andrei) when the organic sludge was suppied to them (유기성 슬러지 먹이에 대한 두 근연종인 줄지렁이(Eisenia fetida)와 붉은줄지렁이(Eisenia andrei)의 생식반응 비교)

  • Bae, Yoon-Hwan;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • CO I gene sequence analysis was applied to earthworms that had been used as test animals in toxicity test in Institute of Kyeongbook Agrochemicals and earthworms used as vermicomposting agents in the farm of Youngdong province to identify their species names. In terms of molecular species, the former was identified as Eisenia fetida and the latter was Eisenia andrei. Cocoons produced from Eisenia fetida was more than those from Eisenia andrei. And No. of adults developed from eggs of Eisenia fetida was more or less higher than those developed from eggs of Eisenia andrei. These results were contradictory to previous reports on two Eisenia spp.. When Eisenia fetida was crossed with Eisenia andrei, hybridized eggs were produced and adults were developed from those eggs, but cocoons and adults were much less than those from non-crossed Eisenia fetida or Eisenia andrei. This indicated that two Eisenia spp. were not distinctly different biological species because there was no complete 'reproductive isolation' between Eisenia fetida and Eisenia andrei. However, this also meant that Eisenia fetida and Eisenia andrei had already been on the tract of speciation.

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Empirical Analysis on Determinants of Air Pollution in China (중국의 대기오염 배출 결정요인에 대한 경험적 분석)

  • Li, Dmitriy D.;Wang, Wen;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • The rapid economic growth has brought tremendous pressure on the environment and caused severe air pollution in China. This study empirically examines causes of air pollution in China. Panel-corrected standard errors procedure (PCSE) was used to analyze major determinants of increasing or reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) in 30 Chinese provinces. The estimation results show that SO2 emission is mitigated as per capita regional GDP increases, but the relation between emission of NOX and per capita regional GDP is found to have an inverse N-shaped curve, which implies that emission of NOX is ultimately expected to decline with economic growth. As for increasing factors of air pollutants, electricity consumption is a significant common source of SO2 and NOX emissions. Moreover, the results show that increment of coal consumption significantly affects emission of SO2 while increase of natural gas consumption reduce emission of SO2. On the other side, investment in energy industry, and investment on treatment of waste gases are determinants of mitigating emissions of SO2, but have no impact on NOX. Consumption of diesel, truck ratio and number of vehicles increase emission of NOX. Meanwhile, higher precipitation rate is a common determinant of mitigating emissions of SO2 and NOX. Policy implications are suggested in the conclusion.

Feasibility Study on a Defrost Control Method by Using a Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 타당성 검토)

  • Jeon, Chang-Duk;Kim, Dong-Seon;Lee, Seung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3389-3395
    • /
    • 2014
  • Conventional methods, such as the clock time control method and temperature difference control method, for defrost control often encounter mal-defrost and a waste of energy. Therefore, a more efficient method is needed to control defrosting precisely. A photoelectric sensor unit consisting of an emitter and a collector was installed in the front of outdoor heat exchanger. Accurate defrost control was performed by monitoring and using the change in output voltage according to the presence of frost. In this study, experiments were performed to determine if the performance and characteristic curves obtained using the clock time control method can be reproduced using a photoelectric sensor under the heating and defrosting capacity test condition described at KS C 9306. The output voltage of the phototransistor (receiver) and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger, were compared. The results showed that photoelectric sensors can be used as a defrost control method. On-off control timing of the clock time defrosting method was in good agreement with those predicted by the output voltage of the photoelectric sensor.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Production of Keratinolytic Protease by Bacillus pumilus RS7 and Feather Hydrolysate As a Source of Amino Acids (Bacillus pumilus RS7에 의한 난분해성 케라틴 분해효소의 생산 및 아미노산 공급원으로서 우모 분해산물)

  • Woo, Eun-Ok;Kim, Min-Ju;Son, Hyeng-Sik;Ryu, Eun-Youn;Jeong, Seong-Yun;Son, Hong-Joo;Lee, Sang-Joon;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1203-1208
    • /
    • 2007
  • Feathers are produced in huge quantities as a waste product at commercial poultry processing plants. Since feathers are almost pure keratin protein, feather wastes represent an alternative to more expensive dietary ingredients for animal feedstuffs. Generally they become feather meal used as animal feed after undergoing physical and chemical treatments. These processes require significant energy and also cause environmental pollutions. Therefore, biodegradation of feather by microorganisms represents an alternative method to prevent environment contamination. The aim of this study was to investigate cultural conditions affecting keratinolytic protease production by Bacillus pumilus RS7. We also assessed the nutritive value of microbial and alkaline feather hydrolysates, The composition of optimal medium for the keratinolytic protease was fructose 0.05%, yeast extract 0.3%, NaCl 0.05%, K2HPO4 0.03%, KH2PO4 0.04% and MgCl2 6H2O 0.01%, respectively. The optimal temperature and initial pH was $30^{\circ}C$ and 9.0, respectively. The keratinolytic protease production under optimal condition reached a maximum after 18 h of cultivation. Total amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $113.8\;{\mu}g/ml$ and $504.9\;{\mu}g/ml$, respectively. Essential amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $47.2\;{\mu}g/ml$ and $334.0\;{\mu}g/ml$, respectively. Thus, feather hydrolysates have the potential for utilization as an ingredient in animal feed.

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

A Research on the Paradigm of Interaction Based on Attributes (인터렉션 속성에 기초한 인터렉션 범식화 연구)

  • Shan, Shu Ya;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.127-138
    • /
    • 2021
  • The aim of this study is to demonstrate interaction as a describable field and tries to understand interaction from the perspective of attributes, thus building a theoretical to help interactive designer understand this field by common rule, rather than waste huge time and labor cost on iteration. Since the concept of interaction language has been brought out in 2000, there are varies of related academical studies, but all with defect such as proposed theoretical models are built on a non-uniform scale, or the analyzing perspective are mainly based on researcher's personal experience and being too unobjective. The value of this study is the clustered resource of research which mainly based on academical review. It collected 21 papers researched on interaction paradigm or interaction attributes published since 2000, extracting 19 interaction attribute models which contains 174 interaction attributes. Furthermore, these 174 attributes were re-clustered based on a more unified standard scale, and the two theoretical models summarized from it are respectively focuses on interaction control and interaction experience, both of which covered 6 independent attributes. The propose of this theoretical models and the analyzation of the cluster static will contribute on further revealing of the importance of interaction attribute, or the attention interaction attribute has been paid on. Also, in this regard, the interactive designer could reasonably allocate their energy during design process, and the future potential on various direction of interaction design could be discussed.