• Title/Summary/Keyword: Waste-to-Energy

Search Result 2,705, Processing Time 0.038 seconds

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.

Development and Performance Evaluation of a Filtration Equipment to Reuse PFC Waste Solution Generated on PFC Decontamination (PFC 제염 시 발생된 PFC 폐액의 재사용을 위한 여과장치 개발 및 성능평가)

  • Kim Gye-Nam;Jeong Cheol-Jin;Won Hui-Jun;Choi Wang-Kyu;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.161-170
    • /
    • 2006
  • PFC(Perfluorocarbon) decontamination process is one of best methods to remove hot particulate adhered on the inner surface of hot cell and surface of equipment in hot cell. It was necessary to develop a filtration equipment to reuse the PFC waste solution generated on PFC decontamination due to the high cost of PFC solution and for minimization of the volume of second waste solution. The filtration equipment was developed to remove hot particulate in PFC waste solution. It was made suitable size and weight in consideration of hot cell gate and crane. And it has wheels for easy movement. Flux of the filtration equipment decreased with particulate concentration increase. It consists of pre-filter($1.4{\mu}m$) and final-filter($0.2{\mu}m$) for protection of the flux decrease along filtration time. It treatment capacity of waste solution is 0.2 L/min.

  • PDF

A Study on Residents' Acceptance of Unutilized Heat in District Heating (미활용 열에너지의 집단에너지 주민 수용성에 관한 연구)

  • Doo Hwan Won;Saesin Oh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.191-215
    • /
    • 2023
  • This study focuses on evaluating and comparing residents' acceptance of unutilized heat such as hydrothermal energy and waste heat from waste incineration and data centers in the case that they are used as district heat sources. This is because securing residents' acceptance is significantly important in order for unutilized heat to be considered as a heat source of district heating and cooling to achieve neutrality in the heating and cooling sector. A survey of heating consumers' perception on unutilized heat energy is conducted and a conjoint model is used to analyze the willingness to pay of heating consumers on incineration heat, water heat, and data center waste heat and to compare them with existing gas heat sources. As a result of the analysis, it is confirmed that district heating using hydrothermal energy and data center waste heat is preferred to district heating from heat from a natural gas plant or waste incineration.

Biomass Energy Potential of Wood Waste due to Forest Land Conversion (산림전용에 따른 폐잔목의 임산바이오에너지 잠재적 공급량 분석)

  • Kwon, Soon-Duk;Son, Yeong-Mo;Park, Young-Kyu
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • This study aimed to assess biomass energy resources available from waste wood due to forest land conversion. Forest land area of 7,806ha on annul average during 2001-2005 was converted to other land use and the growing stock of $266,551m^3$ was felled annually due to the conversion. Biomass energy potential of waste wood due to forest land conversion was estimated to 102,325 tons of biomass on annual average during 2001-2005 of which 57,945 tons were from coniferous forest and 44,379 tons were from broadleaved forest. Biomass energy Potential Per unit area Per year increased for the same period and was estimated to 13.0 tons of biomass on annual average.

  • PDF

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

  • Song, Kee-Chan;Lee, Han-Soo;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.131-144
    • /
    • 2010
  • The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).

Removal of Uranium Ions in Lagoon Waste by Electrosorption

  • Jung, Chong-Hun;Won, Hui-Jun;Park, Wang-Kyu;Kim, Gye-Nam;Oh, Won-Zin;Hwang, Sung-Tai;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.701-706
    • /
    • 2003
  • A study on the electrosorption of U(VI) onto porous activated carbon fibers (ACFs) was performed to treat uranium-containing lagoon sludge. Effective U(Ⅵ) removal is accomplished when a negative potential is applied to the activated carbon fiber(ACF) electrode. For a feed concentration of 100mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1mg/L. The adsorbed uranium could be deserted from the ACF by passing a 1M NaCl solution through the cell and applying a positive potential onto the electrode. The regeneration of ACF from the cycling experiments was confirmed.

  • PDF

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

Cyclic Voltammetry Depending on the Electrode Connection Mode in Small-scale LCC Electrowinning System

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Lee, Seul Gi;Jang, Junhyuk;Paek, Seungwoo;Lee, Hansoo;Eun, Hee-Chul;Lee, Sung-Jai;Ahn, Do-Hee
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.92-93
    • /
    • 2017
  • In this paper, CV behavior of electrowinning system was studied depending on the electrode connection mode of potentiostat. In this system, currents can be flown from electrodes to SUS parts because the LCC assembly was electrically connected between the SUS parts and electrolytic salt. Standard mode without ground line of multi tab or CE to ground mode is considered to be more reasonable than standard mode when using multi tab having ground line.

  • PDF

Spectroscopic Studies on Pu(III) Hydrolysis Under Reducing and Elevated Temperatures Conditions

  • Cho, Hye-Ryun;Kim, Hee Kyung;Jung, Euo Chang;Cha, Wansik
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.137-138
    • /
    • 2017
  • The spectroscopic reference data for plutonium at different temperatures are necessary information for the chemical speciation and evaluation of thermodynamic data at elevated temperature. This work is the initial step to extend research activities for understanding the plutonium chemistry in aquatic solutions at high temperature. The hydrolysis of Pu(III) and the solubility of Pu(III) hydroxide at the elevated temperature will be discussed.

  • PDF