• 제목/요약/키워드: Waste-to-Energy

검색결과 2,689건 처리시간 0.029초

폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구 (Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide)

  • 김경석;추용식
    • 자원리싸이클링
    • /
    • 제28권6호
    • /
    • pp.54-63
    • /
    • 2019
  • 본 연구에서는 폐유리를 골재로 재활용하고자 폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 압축강도 및 길이 변화율 등을 검토하였다. 3일 및 7일 압축강도는 일반 모래 대체용 폐유리 사용량이 증가할수록 상승하였다. 특히, 폐유리 사용량이 10~50% 범위일 경우, 압축강도는 큰 폭으로 상승하는 경향을 나타내었다. 더불어 폐유리 50% 조건에서도 산화 그래핀의 첨가량이 증가됨에 따라 압축강도가 상승하였으며, 0.2%를 첨가하였을 때, 압축강도는 42.6 N/㎟ 이었다. 폐유리의 사용량이 증가됨에 따라 모르타르의 길이 변화율은 증가하였으나, 50% 이상에서는 길이변화율이 감소하는 경향도 나타내었다. 폐유리 사용량 50% 모르타르에서는 산화 그래핀 첨가량이 증가할수록 길이 변화율이 감소하는 경향을 나타내었으며, 이는 산화 그래핀의 시멘트 수화반응 촉진작용과 이온이동 억제효과로 추정되었다.

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Model of Water, Energy and Waste Management for Development of Eco-Innovation Park ; A Case Study of Center for Research of Science and Technology "PUSPIPTEK," South Tangerang City, Indonesia

  • Setiawati, Sri;Alikodra, Hadi;Pramudya, Bambang;Dharmawan, Arya Hadi
    • World Technopolis Review
    • /
    • 제3권2호
    • /
    • pp.89-96
    • /
    • 2014
  • Center for Research of Science and Technology ("PUSPIPTEK") has 460 hectares land area, still maintained as a green area with more than 30% green space. There are 47 centers for research and testing technology, technology-based industries, and as well as public supporting facilities in PUSPIPTEK area. Based on the concepts developed to make this area as an ecological region, PUSPIPTEK can be seen as a model of eco-innovation. The purpose of this research is to develop a model of water, energy and waste management with eco-innovation concept. As a new approach in addressing environmental degradation and maintaining the sustainability of ecosystem, studies related to eco-innovation policy that combines the management of water, energy and waste in the region has not been done. In order to achieve the objectives of the research, a series of techniques for collecting data on PUSPIPTEK existing conditions will be carried out, which includes utilities data (water, electricity, sewage) and master plan of this area. The savings over the implementation of the concept of eco-innovation in water, energy, and waste management were calculated and analyzed using quatitative methods. The amount of cost savings and feasibility were then calculated. Eco innovation in water management among other innovations include the provision of alternative sources of water, overflow of rain water and water environments utilization, and use of gravity to replace the pumping function. Eco-innovation in energy management innovations include the use of LED and solar cell for air conditioning. Eco-innovation in waste management includes methods of composting for organic waste management. The research results: (1) The savings that can be achieved with the implementation of eco innovation in the water management is Rp. 3,032,640 daily, or Rp.1,106,913,600 annually; (2) The savings derived from the implementation of eco innovation through replacement of central AC to AC LiBr Solar Powered will be saved Rp.1,933,992,990 annually and the use of LED lights in the Public street lighting PUSPIPTEK saved Rp.163,454,433 annually; (3) Application of eco innovation in waste management will be able to raise awareness of the environment by sorting organic, inorganic and plastic waste. Composting and plastic waste obtained from the sale revenue of Rp. 44,016,000 per year; (4) Overall, implementation of the eco-innovation system in PUSPIPTEK area can saves Rp. 3,248,377,023 per year, compared to the existing system; and (5)The savings are obtained with implementation of eco-innovation is considered as income. Analysis of the feasibility of the implementation of eco-innovation in water, energy, and waste management in PUSPIPTEK give NPV at a 15% discount factor in Rp. 3,895,228,761; 23.20% of IRR and 4.48 years of PBP. Thus the model of eco-innovation in the area PUSPIPTEK is feasible to implement.

회분식 반응기에서의 마이크로파 폐타이어 열분해 연구 (A Study of Microwave Waste Tire Pyrolysis in a Batch Reactor)

  • 김성수
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.577-583
    • /
    • 2017
  • A series of microwave waste tire pyrolysis experiments were conducted using a lab-scale batch reactor to delineate the effects of microwave ouput power on the pyrolysis behavior of waste tire. As results of experiments, it was found that as the microwave output power was increased from 1.22 kW/kg to 2.26 kW/kg, the reaction temperature and oil yield increased significantly and the required time and microwave power consumption decreased remarkably, respectively. With increased power consumption, the content of the fixed carbon of pyrolysis residue increased.

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.618-629
    • /
    • 2019
  • Along with growing population and economic development, increasing waste generation rates in developing countries have become a major issue related to the negative impacts of waste management on the environment. Currently, the business-as-usual waste management practices in Myanmar are largely affecting the environment and public health. Therefore, this study developed an alternative approach to waste management for reducing the environmental impacts in Myanmar by highlighting the greenhouse gas (GHG) emissions from business-as-usual practices and three proposed scenarios during 2018-2025. The calculation methods of the Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies were used for estimating the GHG emissions from waste management. It was estimated that the current waste management sector generated approximately 2,000 gigagrams of CO2-eq per year in 2018, trending around 3,350 Gg of CO2-eq per year in 2025. It was also observed that out of the proposed scenarios, Scenario-2 significantly minimized the environmental impacts, with the lowest GHG emissions and highest waste resource recovery. Moreover, the GHG emissions from business-as-usual practices could be reduced by 50% by this scenario during 2018-2025. The target of the similar scenario could be achieved if the local government could efficiently implement waste management in the future.

A Study on Thermal Load Management in a Deep Geological Repository for Efficient Disposal of High Level Radioactive Waste

  • Jongyoul Lee;Heuijoo Choi;Dongkeun Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.469-488
    • /
    • 2022
  • Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300-1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.

The External Benefits of Research and Development Investment in Waste-to-Energy Technology in Korea

  • Lim, Seul-Ye;Kim, Hyo-Jin;Yoo, Seung-Hoon
    • Asian Journal of Innovation and Policy
    • /
    • 제5권2호
    • /
    • pp.208-224
    • /
    • 2016
  • The Korean government considers expanding the WtE share of total energy from 1% to 5% by 2020 through research and development (R&D) in waste-to-energy (WtE) technologies. This study attempts to measure the external benefits of investing in R&D in these technologies. To this end, a contingent valuation (CV) is employed. More specifically, a 2016 national survey of randomly selected 1,000 households was carried out across the nation to gauge the willingness to pay (WTP) for the investment. One-and-one-half-bounded dichotomous choice question was used in the CV survey, and the spike model was applied to dealing with zero WTP responses. The mean yearly WTP is estimated to be KRW 4,175 (USD 3.57) per household, which is statistically significant at the 1% level. Expanding the value to the entire nation translates into an investment of about KRW 79.1 billion (USD 67.6 million), which can be interpreted as the annual external benefit of the R&D investment in WtE technology.

매립처분 오니류의 에너지회수이용 가능량 산정에 관한 연구 (A Study on Estimation of Recycling Potential by Thermal Recovery of Landfilled Sludge)

  • 문희성;김규연;손지환;전태완;신선경
    • 유기물자원화
    • /
    • 제25권4호
    • /
    • pp.5-13
    • /
    • 2017
  • 우리나라는 매립지로 반입되는 폐기물의 억제를 위해 다양한 정책을 추진하고 있다. 매립지로 처분되는 유기성 폐기물 중 하 폐수처리오니가 다량 포함되어 있다. 연료로 사용가능한 일정 발열량 이상의 오니를 발생원에서 분리 건조 가공 등 공정을 통해 에너지를 회수 할 수 있다. 본 연구에서는 한국의 오니 현황 및 특성을 조사하여 에너지를 회수 할 수 있는 오니의 종류와 양을 산정하고자 여러 오니류의 배출특성을 조사하였다. 2015 년 발생 폐기물의 9.2 %, 사업장배출시설계폐기물의 15.2 %가 매립으로 처분되었다. 조사결과, 유 무기성하수처리오니의 고위발열량 평균값은 3,021 kcal/kg, 유 무기성폐수처리오니의 평균 고위발열량은 2,472 kcal/kg이다. 본 연구에서는 오니의 특성과 에너지회수 대상에 대한 고찰을 통해 6 MJ/kg 이상의 오니를 연료로 회수이용 할 수 있을 것으로 판단되었으며, 오니매립처분량의 약 40%를 줄일 수 있을 것으로 추산되었다.

환경에너지 종합타운 조성 타당성에 관한 연구 (Study on Pertinence for Environmental Energy Complex Town Construction)

  • 김영준;이종연;강용태
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.164-171
    • /
    • 2011
  • The objectives of this study are to propose a suitable treatment facility for waste energy recovery after analyzing the waste generation and disposal situation in Jejudo, to establish the plan to install the solar photovoltaics and wind power plant considering the site conditions and finally to establish the environmental energy town plan in conjunction with the existing facilities. The food waste biogas plant is selected as the treatment capacity of 200 ton/day. It is estimated that the biogas plant will produce the electricity of 7,594 MWh per year, which will reduce the greenhouse gas of 4,177 $tCO_2$ per year. The solar photovoltaics and wind power plant will produce the electricity of 13,410 MWh per year, which will reduce the greenhouse gas of 7,375 $tCO_2$ per year. Environmental energy town will give us the reduction of operating cost by centralized treatment of residues and byproducts, and by efficient utilization of produced energy.