• 제목/요약/키워드: Waste treatment technology

Search Result 761, Processing Time 0.024 seconds

The Gasification & Melting Treatment Technology of Waste (폐기물 열분해 가스화용융 기술)

  • Huh, Il-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper - (도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 -)

  • Lim, Bu-Kug;Yang, Jae-Kyung;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF

A Study on the Waste Water Recycling Technology for Semiconductor Industry (반도체 산업폐수의 재이용 기술에 관한 연구)

  • 지은상;김재우;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.137-142
    • /
    • 1999
  • Current semiconductor industry factories are relying on the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water shortage. As a result in order to solve those waste and industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology with physical, chemical and biological treatment methods as a mixed stream basis for treating of semiconductor waste stream into clean technology with pollution prevention technology as a waste segregation basis, we can bet 20 to 30% investment reduction as compared with end-of-pipe treatment technology.The results for water quality analysis were as follows : 1. Water quality analysis of the before treatment : pH : 9~10.5, Conductivity : $300~7,000{\mu}s/cm$, TDS : more then $3,000mg/{\ell}$, COD : $200~250mg/{\ell}$, SS : $500~600mg/{\ell}$, n-H : $8.3mg/{\ell}$ 2. Water quality analysis of the after treatment : pH : 6.5~7.5, Conductivity : 0.059, TDS : $40{\mu}s/cm$, COD : $20mg/{\ell}$, SS : $5mg/{\ell}$ n-H : $0.6mg/{\ell}$

  • PDF

A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch (플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발)

  • Moon, Young-Pyo;Cho, Chun-Hyung;Song, Myung-Jae;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

The Worldwide Trend of waste Treatment Technology and DAEWOO-TS Gasification & Melting System (세계의 폐기물처리기술 동향과 DAEWOO-TS 열분해 가스화 용융기술)

  • 허일상;김우봉
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • Worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary for our country to adopt gasification & melting system urgently to present the land pollution and lack of landfill area. Among several gasification and melting processes Daewoo-Thermoselect gasification and melting system is the representative process which can transfer waste to resources such as sin-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, degasification, gasification and melting.

  • PDF

Ultrasonic treatment of waste livestock blood for enhancement of solubilization

  • Jeon, Yong-Woo;Kim, Hyeon-Jeong;Shin, Myung-Seop;Pak, Seo-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • The aim of this study was to recycle the waste livestock blood as one of the waste biomass by turning proteins, the main constituent of blood, into effective biological resources like amino acid. Ultrasonic technology was applied to solubilize the proteins in the waste livestock blood. And of the multiple ultrasonic frequencies tested, 20 kHz was confirmed to yield the highest solubilization rate. The optimum pretreatment conditions were determined to be 30-min treatment at an ultrasonic irradiation density of 0.5 W/mL, which resulted in a solubilization rate of 96.01%. Also, a gel permeation chromatography (GPC) confirmed that a large amount of proteins were solubilized, and in an experiment where ultrasonic treatment was applied to kill bacteria, death rates of general bacteria and total coliforms were found to be reduced by 99.93% and 100%, respectively. Based on these results, ultrasonic technology was confirmed to be a crucial part of treating and recycling the proteins in waste livestock blood.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.