• Title/Summary/Keyword: Waste solution

Search Result 1,048, Processing Time 0.024 seconds

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

A Study on the Passive House Technology Application of University Dormitory through The House at Cornell Tech (코넬 공과대학 기숙사 사례를 통한 대학 기숙사의 패시브 하우스 기술 적용에 관한 연구)

  • Kim, Hong-Min;Oh, Hyoung-Seok;Ryu, Soo-Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.11-18
    • /
    • 2018
  • Global warming is happening now and inevitable. Everyone knows that immediate action should be taken to slow it down, but uncertain about the effective solution. Despite global efforts to reduce greenhouse gas emissions, sea levels are rising gradually. In 2013, Cornell University announced the Climate Action Plan(CAP) to make the campus greener, to reduce waste, and to ensure efficient use of resources. In particular, they set a goal of reducing energy use by 2050 and making carbon emissions to zero. Accordingly, the purpose of this study is to analyse the case of the master plan of Cornell Tech campus and its major buildings. Mainly, The House, faculty and student housing of Cornell Tech and the world tallest certified passive house, will be the main precedent that shows the architectural planning of passive house. Passive house technology, which was thought to be possible only in single-family houses, can be applied to high-rise buildings. If any passive house technology of The House project is actively introduced into the dormitory projects of domestic universities that are about to be built or renovated, it will be a good opportunity for the university to take the lead in preparing for global warming.

Production of Red Bean Starch Granule with Cellulase from Fusarium moniliforme (Fusarium moniliforme이 생산하는 셀룰라아제를 이용한 소두전분제조(小豆澱粉製造))

  • Cho, Yong-Kweon;Park, Kwan-Hwa
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • Two fractions of ${\beta}-glucanase$(CMCase), two fractions of filter paper degradation enzyme (FPase) and one ${\beta}-glucanase$ fraction were partially purified from Fusarium moniliforme and applied to recovery process of red bean starch. Red bean were incubated with the fractions of CMCase and FPase at $50^{\circ}C$ for 2 hours and the starch granules are separated. Maximal sedimentation rate of red bean starch granules was obtained with treatment of the mixture solution of 0.004 units/ml of FPase and 0.3 units/ml of CMCase. In the enzyme treated process percent recovery of red bean starch granule increased about 7% and suspended solid in waste water was reduced about 40%, compared with those of control. The results indicated that red bean cell treated with cellulase fractions absorbed water more rapidly and specific gravity of starch granule increased.

  • PDF

Parametric Optimization of Feruloyl Esterase Production from Aspergillus terreus Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum

  • Kumar, C. Ganesh;Kamle, Avijeet;Mongolla, Poornima;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71-0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of $30^{\circ}C$. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.

Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties (이중 불확실성하의 공정-저장조 망구조 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

Synthesis of nano Cerium(IV) oxide from recycled Ce precusor (재생 세륨 전구체로부터 나노산화세륨(IV)합성)

  • Kang, Tae-Hee;Koo, Sang-Man;Jung, Choong-Ho;Hwang, Kwang-Taek;Kang, Woo-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Cerium compounds such as Cerium hydroxide ($Ce(OH)_3$), Cerium chloride ($CeCl_3{\cdot}nH_2O$), Cerium carbonate hydrate ($Ce_2(CO_3)_3{\cdot}8H_2O$), Cerium oxide ($CeO_2$) were synthesized using recycled Ce precursor. Cerium(IV) oxide of nanoparticles were obtained by Ultra-sonication. Cerium-sodium- sulfate compound was synthesized through acid-leaching and addition of sodium sulfate from 99 wt% purity of Ce precursor as a starting material that was recycled from the waste polishing slurry. Moreover Cerium hydroxide was obtained from Cerium-sodium-sulfate compound by adding to sodium hydroxide solution. Then Cerium chloride was synthesized by adding of hydrochloric acid to Cerium hydroxide. Needle-shaped Cerium carbonate hydrate was synthesized in the continuous process and Cerium(IV) oxide with 30~40 nm size was subsequently obtained by the calcinations and dispersion.

Extraction Characteristics of $Cr^{6+}$ from Aqueous Solutions with PC-88A, Alamine 336 and Aliquat 336 (PC-88A, Alamine 336 및 Aliquat 336에 의한 수용액중$Cr^{6+}$의 추출특성)

  • Kim Sung Gyu;Lee Hwa Young;Oh Jong Kee
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 2002
  • A study on the solvent extraction of hexavalent chromium from aqueous solutions has been investigated. The results showed that the extraction efficiency of chromium increased in proportion to extractant concentration. Aliquat 336 of quarternary amine effectively extracted hexavalent chromium and was superior to Alamine 336. And the stabilizers like polyhydric alcohols of octanol, decanol and dodecanol showed the similar effect fur prevention of third phase and a little promotion of extraction efficiency in comparison with non-use of polyhydric alcohols. On the other hand, in solvent extraction of hexavalent chromium from aqueous solutions, the hexavalent chromium was completely extracted at pH range lower than 7 with 1% Aliquat 336 as extractant and 5% decanol as stabilizer and the hexavalent chromium in extractant was completely stripped with 1M sodium hydroxide solution in the stripping step.

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

Removal of Gaseous Styrene using a Pilot-Scale Rotating Drum Biotrickling Filter (Pilot-scale 회전식 드럼 바이오필터를 이용한 Styrene 제거)

  • Hwang, Jae-Woong;Lim, Ji-Sung;Chang, Seok-Jin;Lee, Eun-Yul;Choi, Cha-Yong;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2006
  • A new type of biofilter, a rotating drum biotrickling filter(RDBF), was developed and operated for the removal of styrene from industrial waste gas. The porous polyurethane foam sheet was used as a packing materials for the RDBF and a pure culture of Gram-positive bacterium Brevibacillus sp. SP1 was used as an inoculum. The reactor showed a short start-up period of 18 days, during which uniform biofilms were developed on the packing. During a steady operation at an incoming styrene concentration of $200ppm_v$ and a retention time of 0.5 min, a high and stable removal of styrene over 95% was observed. The maximum elimination capacity was estimated to be $125g/m^3{\cdot}hr$. The outstanding performance was attributed to an efficient gas-liquid mass transfer and the appropriate supply of nutrient solution to the biofilm microorganisms on the packing by the rotation of the drum.

Availability of Chicken Feather for Removal of Hexavalent Chromium and Oil (6가 크롬 및 유류 제거를 위한 우모 폐기물의 이용가능성)

  • Jeong, Jin-Ha;Lee, Na-Ri;Park, Sung-Bo;Jeong, Seong-Yun;Park, Geun-Tae;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.369-375
    • /
    • 2012
  • We investigated usefulness of chicken feather as bioadsorbent for removal of hexavalent chromium[Cr(VI)] and oil from aqueous solution. Chicken feather was chemically treated with DTPA, EDTA, NaOH and SDS, respectively. Among them, EDTA was the most effective in adsorbing Cr(VI). Cr(VI) uptake by chicken feather was increased with decreasing pH; the highest Cr(VI) uptake was observed at pH 2.0. By increasing Cr(VI) concentration, Cr(VI) uptake was increased, and maximum Cr(VI) uptake was 0.34 mmol/g. Cr(VI) adsorption by chicken feather was well described by Freundlich isotherm than Langmuir isotherm and Freundlich constant(1/n) was 0.476. As the concentration of chicken feather was increased, Cr (VI) removal efficiency was increased but Cr(VI) uptake was decreased. Most of Cr(VI) was adsorbed at early reaction stage(1 h) and adsorption equilibrium was established at 5 h. On the other hand, chicken feather adsorbed effectively oils including bunker-A and bunker-C. In conclusion, our results suggest that chicken feather waste could be used to remove heavy metal and oil; it is a potential candidate for biosorption material.